next up previous print clean
Next: The accuracy of causal Up: Z-plane, causality, and feedback Previous: Smoothing with a triangle

CAUSAL INTEGRATION FILTER

Begin with a function in discretized time xt. The Fourier transform with the substitution $Z=e^{i \omega\,\Delta t}$ is the Z-transform
\begin{displaymath}
X(Z) \eq \cdots\ + x_{-2} \,Z^{-2} \ +\ x_{-1} \,Z^{-1} \ +\ x_0 
 \ +\ x_1 \,Z \ +\ x_2 \,Z^2 \ +\ \cdots\end{displaymath} (12)
Define $ -i \hat \omega $ (which will turn out to be an approximation to $ -i \omega $) by  
 \begin{displaymath}
{1 \over -i \hat \omega \,\Delta t } \eq
{1 \over 2 }\ { 1\ +\ Z \over 1\ -\ Z }\end{displaymath} (13)
Define another signal yt with Z-transform Y(Z) by applying the operator to X(Z):
\begin{displaymath}
Y(Z)\ \ \ =\ \ \ {1 \over 2 }\ { 1\ +\ Z \over 1\ -\ Z} \ X(Z)\end{displaymath} (14)
Multiply both sides by (1-Z):
\begin{displaymath}
(1\ -\ Z)\ Y(Z)\ \ \ =\ \ \ {1 \over 2 }\ (1\ +\ Z)\ X(Z)\end{displaymath} (15)
Equate the coefficient of Zt on each side:
\begin{displaymath}
y_t\ -\ y_{{t-1}}\ \ \ =\ \ \ {x_t\ +\ x_{{t-1}} \over 2 }\end{displaymath} (16)
Taking xt to be an impulse function, we see that yt turns out to be a step function, that is,
\begin{displaymath}
x_t \eq \cdots 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, \cdots\end{displaymath} (17)
\begin{displaymath}
y_t \eq \cdots 0, 0, 0, 0, 0, {1 \over 2 }, 1, 1, 1, 1, 1, 1, \cdots \end{displaymath} (18)
So yt is the discrete-domain representation of the integral of xt from minus infinity to time t. The operator (1+Z)/(1-Z) is called the ``bilinear transform."



 
next up previous print clean
Next: The accuracy of causal Up: Z-plane, causality, and feedback Previous: Smoothing with a triangle
Stanford Exploration Project
10/21/1998