next up previous print clean
Next: Formulas for amplitudes (3D Up: Goldin: Method of discontinuities Previous: One-way propagation (PDKO)

9: INTEGRAL OPERATORS OF WAVE-FIELD CONTINUATIONS

Kirchoff's type representations of the DKO for the homogeneous medium prompts the general form of an integral KO:

 
 \begin{displaymath}
u^{(\pm)} ({\bf r},t) = \int_\Sigma w({\bf r},{\bf r}_0) {\b...
 ...\pm t} u_0 ({\bf r}_0,t \mp T({\bf r},{\bf r}_0)) d {\bf r_0} ,\end{displaymath} (99)

where $w({\bf r},{\bf r}_0)$ - negative weight function, $T({\bf r},{\bf r}_0)$ - propagation time from ${\bf r}$ to ${\bf r}_0$ with accordance with a given eiconal equation

 
 \begin{displaymath}
\Psi(\nabla \tau ; v) = 1 .\end{displaymath} (100)

Without any lack of generality we can put n=0. We propose that

\begin{displaymath}
u_0 ({\bf r}_0,t) \stackrel{q}{\sim} A_0 ({\bf r}_0) R_q [t - \tau_0 ({\bf r}_0)] .\end{displaymath}

then

\begin{displaymath}
{\bf D}^{q+1}u_0 ({\bf r}_0,t) \stackrel{-1}{\sim} A_0 ({\bf r}_0) \delta [t-\tau_0 ({\bf r}_0)]\end{displaymath}

and

 
 \begin{displaymath}
U^{(\pm)} ({\bf r},t) = {\bf D}^{q+1} u({\bf r},t){\sim}\int...
 ...\delta[t-\tau_0({\bf r}_0)\mp
T({\bf r},{\bf r}_0)]d {\bf r}_0.\end{displaymath} (101)

It is well known that

\begin{displaymath}
\int_X f(x)\delta (x-x_0)dx =\left\{ \begin{array}
{ll}
 f(x_0) & x_0 \in X \\  0 & x_0 \not \in X.
 \end{array} \right.\end{displaymath}

It is easy to show that when point ${\bf r}$ is placed behind the front $\tau^{(-)}
=t^\ast$ (where $\tau^{(-)}$ is the correspondent solution of equation (100) with condition $\tau \vert _\Sigma = \tau_0$), then argument of $\delta$-function at $t=t^\ast$ is always positive:

\begin{eqnarraystar}
t^\ast -\tau_0({\bf r}_0)+T({\bf r},{\bf r}_0) & \gt & t^\a...
 ...^\ast-\tau_0({\bf r}_0)+(\tau_0({\bf r}_0)-t^\ast) \\  & = & 0\end{eqnarraystar}
(see Figure [*]). It means that in this case, $U^{(-)}({\bf r},t^\ast) = 0$. It is also can be shown that when ${\bf r}$ is between the front $\tau^{(-)}
=t^\ast$ and the surface $\Sigma$, that argument of $\delta$-function at $t=t^\ast$ takes both negative and positive meanings. So in this case, $U^{(-)}({\bf r},t^\ast)
\neq 0$. This proves kinematically equivalence of the operator (99).



 
next up previous print clean
Next: Formulas for amplitudes (3D Up: Goldin: Method of discontinuities Previous: One-way propagation (PDKO)
Stanford Exploration Project
1/13/1998