next up previous print clean
Next: 10: EXTREMAL VELOCITIES Up: 9: INTEGRAL OPERATORS OF Previous: Amplitude equivalence

Very simple but important property

If w=w1w2 and $A_1({\bf r})$ is a discontinuity amplitude of the field

\begin{displaymath}
U_1({\bf r},t) = {\bf P}^{(\pm)}_{w_1}(v)u_0({\bf r}_0,t)\end{displaymath}

(where ${\bf P}^{(-)}_{w_1}$ is the KO with the kernel w1) then the discontinuity of the field

\begin{displaymath}
U({\bf r},t) = {\bf P}^{(\pm)}_w(v)u_0({P\bf r}_0,t)\end{displaymath}

has the amplitude

\begin{displaymath}
A({\bf r}) = A_1({\bf r})w_2.\end{displaymath}

In particular, it means that if

\begin{displaymath}
w=w_E \Psi({\bf r},{\bf r}_0)\end{displaymath}

and AE is the amplitude of the field

\begin{displaymath}
u_E = {\bf P}^{(-)}_{w_E}(v)U_0(t),\end{displaymath}

then for field $u={\bf P}^{(-)}_w u_0$ has discontinuity amplitude:

\begin{displaymath}
A({\bf r}) = A_E \Psi({\bf r},{\bf r}^\ast_0),\ \ \ \ {\bf r}^\ast_0=\omega({\bf r}).\end{displaymath}

Here, dependence $\omega({\bf r})$ means that ${\bf r}^\ast_0$ belongs to the same ray of eiconal $\tau^{(-)}({\bf r})$.
next up previous print clean
Next: 10: EXTREMAL VELOCITIES Up: 9: INTEGRAL OPERATORS OF Previous: Amplitude equivalence
Stanford Exploration Project
1/13/1998