next up previous print clean
Next: Amplitude equivalence Up: 9: INTEGRAL OPERATORS OF Previous: Formulas for amplitudes (3D

2D case

If we use the same type of considerations as in the 3D case, we receive

\begin{displaymath}
U^{(-)}({\bf r},t)={1 \over \sqrt{\pi d^{(-)}}}{wA_0H[\tau({\bf r})-t] \over
\sqrt{\tau^{(-)}({\bf r})-t}}+\psi({\bf r})\end{displaymath}

where $\psi ({\bf r})$ is a smooth function,

\begin{displaymath}
d^{(-)}={\partial^2 T({\bf r},x) \over \partial x}-{\partial^2 \tau_0(x) 
\over \partial x}.\end{displaymath}

Let us expand the class of discontinuities

\begin{displaymath}
R^{(+)}_q(t) = {t^q_+ \over \Gamma(q+1)}{\:}\ \ \ \ q \neq -1\end{displaymath}

with arbitrary (noninteger) q, and

R(-)q(t) = R(+)q(-t).

We must also expand the notion of q-equivalence (which was introduced in the Chapter 1) to a noninteger q: $f_{1}(t)
\stackrel{q}{\sim } f_{2}(t)$ if ${\bf D}^{q}(f_{1}(t)-f_{2}(t))\in {\rm C}$.The operator of noninteger differentiation ${\bf D}^q$ was considered above for q=1/2 (see Chapter 8). For arbitrary q it can be defined by spectra response $(i\omega)^q=\vert\omega \vert^q \exp(-{i\pi \over 2} q \hbox{sgn}(\omega))$.

It can be shown that

\begin{displaymath}
R^{(-)}_q(t) \stackrel{q}{\sim} -R^{(+)}_{q,-2q} \ \ ;\ \ 
R^{(+)}_q(t) \stackrel{q}{\sim} -R^{(-)}_{q,2q}(t)\end{displaymath}

\begin{displaymath}
{\bf D}^p_{\pm t}R^{\pm}_q(t) \stackrel{q-p}{\sim} R^{(\pm)}_{q-p}(t)\end{displaymath}

\begin{eqnarraystar}
{\bf D}^p_{(\beta)}R^{(\alpha)}_{q,\nu} & \stackrel{q-p}{\s...
 ...ackrel{q-p}{\sim} & R^{(\alpha)}_{q-p,\nu+p(\alpha-\beta)}(t).\end{eqnarraystar}

It is easy to see that

\begin{displaymath}
U^{(-)}({\bf r},t) \sim {wA_0 \over \sqrt{d^{(-)}}} R^{(-)}_{-{1 \over2}}
[t-\tau^{(-)}({\bf r})]\end{displaymath}

and

\begin{displaymath}
u({\bf r},t) \sim {wA_0 \over \sqrt{d^{(-)}}} R^{(-)}_{q+{1 \over2}}
[t-\tau^{(-)}({\bf r})]\end{displaymath}

(it is proposed that d(-)>0).

If d(-)<0, then

\begin{displaymath}
U^{(-)} \sim {wA_0 \over \sqrt{\vert d^{(-)}\vert}} R^{(+)}_{-{1 \over2}}
[t-\tau^{(-)}({\bf r})]\end{displaymath}

and general formula

\begin{displaymath}
U^{(-)} \sim \kappa {wA_0 \over \sqrt{\vert d^{(-)}\vert}} 
R^{(-)}_{-{1 \over2},{1- \kappa \over 2}}
[t-\tau^{(-)}]\end{displaymath}

where $\kappa = \mbox{sgn}(d^{(-)})$.

Let d(-)=0. We introduce the order of touching of curves $T({\bf r},x)$and $\tau_0(x)$:the order = p if

\begin{displaymath}
{\partial^kT \over \partial x^k} - {\partial^k \tau_0 \over \partial x^k}
= 0, \ \ \ \ k=0,1,\ldots,p\end{displaymath}

and

\begin{displaymath}
d^{(-)}_p = {\partial^{p+1} T \over \partial x^{p+1}}-
{\partial^{p+1}\tau_0 \over \partial x^{p+1}} \neq 0.\end{displaymath}

If the order p is even, then

\begin{displaymath}
u^{(\pm)} \sim A_p[R^{(+)}_{q+{1 \over p+1}}(t-\tau^{(-)})+R^{(-)}_{q+{1 \over p+1}}
(t-\tau^{(-)})]\end{displaymath}

\begin{displaymath}
A_p \sim {1 \over \vert d_p\vert^{1 \over p+1}}\end{displaymath}

If the order is uneven

\begin{displaymath}
u^{(\pm)} \sim A_p R^{(-)}_{q+{1 \over p}}(t-\tau_{(-)}).\end{displaymath}

The point ${\bf r}$ is a special one if, for given ${\bf r}$ and ${\bf r}^\ast_0 =\omega({\bf r})$,$\ \ d^{(-)} = 0$.Each special point of the order p=2 is the point on caustics.


next up previous print clean
Next: Amplitude equivalence Up: 9: INTEGRAL OPERATORS OF Previous: Formulas for amplitudes (3D
Stanford Exploration Project
1/13/1998