previous up next print clean
Next: Application to 45 degree Up: THE BULLETPROOFING OF MUIR Previous: Stability of the differential

Stability of the difference equation

The stability of the difference equation can be shown in a similar way, but with some extra clutter. First observe the identity  
 \begin{displaymath}
( a^ { {\rm *} \, } a\ -\ \b^ {{\rm *}\,} \b ) \ \ \ \equiv
...
 ...} 
( a\ -\ \b ) \ +\ ( a\ -\ \b )^ { {\rm *} \, } ( a\ +\ \b )]\end{displaymath} (84)
Letting $ a\ =\ q_{n+1} $ and $ \b \ =\ q_n $,equation (84) becomes

\begin{displaymath}
( q_{n+1}^ { {\rm *} \, } q_{n+1} \ -\ q_n^ { {\rm *} \, } q...
 ... \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \end{displaymath}

 
 \begin{displaymath}
\ \ \eq 
{1 \over 2}\ [(q_{n+1} \ +\ q_n )^{{\rm *}\,} ( q_{...
 ... +\ 
( q_{n+1} \ -\ q_n )^ { {\rm *} \, } ( q_{n+1} \ +\ q_n )]\end{displaymath} (85)
Now, replace the $( q_{n+1} \ -\ q_n )$ terms by equation (81):

\begin{displaymath}
\eq -\ {\Delta z \over 4}\ [
\ ( q_{n+1}+ q_n )^{{\rm *}\,}
...
 ...n )+
(q_{n+1}+q_n )^{{\rm *}\,}
 R^{{\rm *}}
 \,(q_{n+1}+q_n )]\end{displaymath}

 
 \begin{displaymath}
=\ \ \ -\ {\Delta z \over \ 4} \ 
[( q_{n+1} \ +\ q_n )^ { {\rm *} \, } 
( R\ +\ R^ { {\rm *} \, } )\,( q_{n+1} \ +\ q_n )]\end{displaymath} (86)
This equation establishes the result: If the matrix $ R\ +\ R^ { {\rm *} \, } $ is positive definite, then $ q_{n+1}^ { {\rm *} \, } q_{n+1} $is less than $q_n^ { {\rm *} \, } q_n $.


previous up next print clean
Next: Application to 45 degree Up: THE BULLETPROOFING OF MUIR Previous: Stability of the differential
Stanford Exploration Project
10/31/1997