Next: Stability of the difference
Up: THE BULLETPROOFING OF MUIR
Previous: THE BULLETPROOFING OF MUIR
Let
denote the
Hermitian conjugate of q.
For equation (80) to be stable
the energy
must be either constant or
decaying during depth extrapolation.
| ![\begin{eqnarray}
{d\ \over dz }\ ( q^ { {\rm *} \, } q) \ \ \ &\le&\ \ \ 0
\nonu...
...q^ { {\rm *} \, } q_z \ +\ q_z^ { {\rm *} \, } q\ \ \ &\le&\ \ \ 0\end{eqnarray}](img216.gif) |
|
| (82) |
Substituting equation (80) into equation (82) gives
| ![\begin{eqnarray}
q^{\rm *}\,R\,q\ +\ q^{\rm *} R^{\rm *} \, q\ \ \ &\ge&\ \ \ 0
...
... q^ { {\rm *} \, } ( R\ +\ R^ { {\rm *} \, } ) q\ \ \ &\ge&\ \ \ 0\end{eqnarray}](img217.gif) |
|
| (83) |
Equation (83) shows that
must be positive semidefinite
for the differential equation to be stable.
Next: Stability of the difference
Up: THE BULLETPROOFING OF MUIR
Previous: THE BULLETPROOFING OF MUIR
Stanford Exploration Project
10/31/1997