Next: 15: COMPARISON OF PRE-
Up: 12: OPERATOR OF INTEGRAL
Previous: Dynamics of the main
Integral (126) describes the situation in the linear tomography when
rays can be parametricized as a function of
and
| ![\begin{displaymath}
w=(x; \xi ,\eta )=\sqrt{1+{\vert\th ^{'}_{x}\vert}^{2}}.\end{displaymath}](img778.gif) |
(129) |
The general problem of tomography is the reconstruction of the field u0(x,y)
using the given field
. We shall reduce this problem to a
simpler one: to reconstruct the discontinuities of the field u0(x,y). The
possibility of this reduction follows from the fact that discontinuities are
a model for the most vivid particularities of the object.
So our task is to find such an operator
, that
![\begin{displaymath}
{\bf P}^{(-)}u(\xi ,\eta ) \stackrel{q}{\sim } u_{0} (x,t).\end{displaymath}](img779.gif)
Let us introduce a dual IG-operator
![\begin{displaymath}
u_{1}(x,y)=\hat{{\bf P}}_{w^{'}} u(\xi ,\eta ),\end{displaymath}](img780.gif)
which has the family of dual lines
as a system
of stacking lines and an arbitrary kernel w'=w'(M,N).
It follows from the results of Chapter 12 that for any kernel w', the
operator
gives geometrical reconstruction of the original
discontinuity of the field u0(x,y) since this operator realizes the mapping
.It is clear that the operator
transforms the dynamics of a discontinuity of the field
in the
same way as the operator
did. Then, according to formula (126)
| ![\begin{displaymath}
U_{1} \sim \hat{{\bf P}}_{w^{'}} u \sim \kappa^{'} {\left[ \...
...A^{'} \right] }_{\omega}R^{(+)}_{q^{''},
\nu ^{''}}[y-\tau (x)]\end{displaymath}](img785.gif) |
(130) |
where
![\begin{displaymath}
d^{'}= { \left( {d^{2} \mu \over d\xi^{2}} - {d^{2}\hat{\th ...
...i^{2}}
\right)}_{\xi =\xi^{\ast }}, {\:}\kappa^{'}=sgn(d^{'}).\end{displaymath}](img787.gif)
We have taken into account that
![\begin{displaymath}
\hat{\th }_{y}={1 \over \th_{y}} \gt o.\end{displaymath}](img788.gif)
Now, combining formulae (128) and (130), we have:
![\begin{displaymath}
u_{1}(x,y) \sim \kappa \kappa^{'} { \left[ \sqrt{{2\pi \over...
...0} \right] }_{{\omega}} R^{(+)}_{q^{''},\nu ^{''}}
[y-\tau (x)]\end{displaymath}](img789.gif)
where
![\begin{displaymath}
\nu ^{''}=\nu - {\kappa -1 \over 2} - {\kappa^{'} -1 \over 2}.\end{displaymath}](img790.gif)
The operator
acts like
and the operator
acts like
.
This means that in order to reconstruct the
order and the index of discontinuities we shall apply the correction filter
.
It can be shown that independently
on the curve
| ![\begin{displaymath}
\kappa ^{'}=-\kappa,\end{displaymath}](img794.gif) |
(132) |
consequently, the correction filter is
. It follows from equations (131)
and (132) that
![\begin{displaymath}
\nu ^{''}=\nu + 1 {\:}\rm{and} {\:}\kappa \kappa^{'}=-1.\end{displaymath}](img796.gif)
But
![\begin{displaymath}
{\bf D}{\bf H}[-R_{q+1,\nu +1}] \sim -R_{q,\nu +2} \sim - {\bf{H}}^{2}R_{q,\nu }
\sim R_{q,\nu}\end{displaymath}](img797.gif)
since
.
The kernal w' must be chosen from the condition
![\begin{displaymath}
{2\pi ww^{'} \over \sqrt{\th _{\eta }\vert dd^{'}\vert}} =1.\end{displaymath}](img799.gif)
I have proven that
dd'=FG
where
![\begin{displaymath}
F=\th_{x\xi }\th_{\eta } - \th_{x\eta }\th_{\xi }, {\:}G={\h...
...{x\xi }
{\hat{\th }}_{y} - {\hat{\th }}_{y\xi}{\hat{\th }}_{x}.\end{displaymath}](img800.gif)
Consequently,
| ![\begin{displaymath}
w^{'}={\sqrt{\th_{\eta }\vert FG\vert \over
2\pi w}}.\end{displaymath}](img801.gif) |
(133) |
So we have shown that
| ![\begin{displaymath}
{\bf P}^{(-)}={\hat{{\bf P}}}_{w^{'}}\vert{\bf D}\vert\end{displaymath}](img802.gif) |
(134) |
where w' is expressed by Formula (133).
For example, let
| ![\begin{displaymath}
\th = \eta + {a \over 2} {(\xi -x)}^{2},\end{displaymath}](img803.gif) |
(135) |
then
![\begin{displaymath}
\hat{\th }= \eta-{a \over 2}{(\xi -x)}^{2}, {\:}ww^{'}={a \over 2\pi }.\end{displaymath}](img804.gif)
If equation (135) is an equation of rays in ray tomography, then according
to equation (129)
![\begin{displaymath}
w = \sqrt{1+a^{2}{(\xi -x)}^{2}}\end{displaymath}](img805.gif)
and
![\begin{displaymath}
w^{'}={a \over 2\pi \sqrt{1+a^{2}{(x-\xi )}^{2}}}.\end{displaymath}](img806.gif)
Figures
-
give an illustration of reconstruction of the
step-function
![\begin{displaymath}
u_{0}(x,y)= H (y-{1 \over 2})\end{displaymath}](img807.gif)
given at the square
(equation (126)).
Figure
a shows the field
. Figure
b is a result of application
of the simplest operator
at
.
Figure
c
is a result of application of the operator
with w'
chosen according to equation(135), And Figure
d gives the field
![\begin{displaymath}
u_{1}(x,y)= {\hat{{\bf P}}}_{w^{'}}\vert{\bf D}\vert u(\xi,\eta ).\end{displaymath}](img810.gif)
It is interesting that Kirchhoff's operators of the forward and reverse
wave-field continuation originate a symmetrical pair of asymptotically inverse operators
and
with
![\begin{displaymath}
w= \sqrt{{\vert F\vert\over 2 \pi}} \equiv w_{E} {\:}{\rm and}{\:}\hat{w}=
\sqrt{{\vert G\vert \over 2\pi }}=w_{E}.\end{displaymath}](img813.gif)
In the n-dimensional case we have the following analog of formula (134)
| ![\begin{displaymath}
{\bf P}^{(-)}={\hat{{\bf P}}}_{w^{'}}{\vert{\bf D}\vert}^{{m \over 2}}, {\:}m=n-1\end{displaymath}](img814.gif) |
(136) |
where the kernel w' is expressed by the same formula (133) but F and
G are determinants of the correspondent matrices.
The formula (111) and (113) were published first by Gr. Beylkin (1984)
who applied a very different approach connected with the theory
of pseudodifferential operators.
Next: 15: COMPARISON OF PRE-
Up: 12: OPERATOR OF INTEGRAL
Previous: Dynamics of the main
Stanford Exploration Project
1/13/1998