next up previous print clean
Next: Application to tomography Up: 12: OPERATOR OF INTEGRAL Previous: Geometry of the main

Dynamics of the main discontinuity

Our task is to describe the profile of the main discontinuity of the field  
 \begin{displaymath}
u(\xi , \eta )={\bf P}_{w}u_{0}(x,y) \equiv 
\int_{X}w(x;\xi ,\eta ) u_{0} (x,y=\th (x;\xi , \eta ))dx\end{displaymath} (126)
along the line $\xi =const$.I remind you that

\begin{displaymath}
u_{0}(x,y)\stackrel{q}{\sim }A_{0}(x)R^{(+)}_{q,\nu }[y-\tau (x)].\end{displaymath}

Applying the operator ${\bf D}^{q+1}{\bf H}^{-\nu }$ we obtain the field

\begin{displaymath}
U(\xi ,\eta ) \sim \int w(x;\xi , \eta ){\vert\th _{\eta }\vert}^{q+1}A_{0}(x)\delta 
[
\th _{M}(x)-\tau (x)]dx.\end{displaymath}

Then we fix a line in the plane $(\xi ,\eta)$:

\begin{displaymath}
{d \th _{M} \over dx} =p {\:}(x=x^{\ast }=const, {\:}p=const),\end{displaymath}

which we shall call a pseudoray. For each point M' belonging to the pseudoray, we apply the expansion of the difference $\th _{M^{'}}(x)-\tau (x)$ into Taylor's series in a neighborhood of the point $x^{\ast }$:

\begin{displaymath}
\th_{M^{'}}(x)-\tau (x)=\epsilon -\left( {d \over 2} \right) l^{2} +0(l^{2})\end{displaymath}

where $\epsilon=y^{'}-y^{\ast }, {\:}y^{\ast }=\th_{M}(X^{\ast}), {\:}l=x-x^{\ast }$and

\begin{displaymath}
d={ \left[ {d^{2}\tau \over dx^{2}}-{d^{2}\th _{M} \over dx^{2}} \right]}_{x=
x^{\ast }}.\end{displaymath}

The above equations are absolutely the same as those that we have already done for the KO. As a result, we will receive a very similar formula describing the field U(M'):  
 \begin{displaymath}
U(M^{'}) \sim {\left[ \sqrt{{2\pi \over \vert d\vert}} {\ver...
 ...0}
\right] }_{{\omega}}R^{(\kappa )}_{-{1 \over 2}} (\epsilon )\end{displaymath} (127)
where $\kappa = {\rm sgn}(d)$.

But here we have some important differences that we have to take into account: Formula (127) describes the profile of the discontinuity along the pseudoray but not along a line $\xi =const$. There is a formalism that connects different profiles of discontinuity. I shall omit this consideration and give you only the final result under $\theta _{\eta}\gt$: 
 \begin{displaymath}
u(\xi ,\eta )\stackrel{q^{'}}{\sim }{({\bf D}^{q+1}{\bf H}^{...
 ...wA_{0} \right] }_{{\omega}}R^{(+)}_{q^{'},\nu ^{'}}[y-\tau (x)]\end{displaymath} (128)
where $q^{'}=q+{1 \over 2},{\:}\nu ^{'}=\nu + {\kappa -1 \over 2}$.I consider this formula to be the main result of the developing theory.


next up previous print clean
Next: Application to tomography Up: 12: OPERATOR OF INTEGRAL Previous: Geometry of the main
Stanford Exploration Project
1/13/1998