In the framework of the ray method one looks for a solution of an equation using the following representation of a wave field:
![]() |
(28) |
![]() |
(29) |
If we put expression (28) into the equation
![]() |
(30) |
![]() |
(31) |
![]() |
(32) |
![]() |
(33) |
We see that ``ray waves'' propagate with the same eiconal as discontinuities. It is not accidental because standard discontinuities satisfy the same relation (29) as ``complex forms'' fn(t).
Moreover, if a source function has a beginning at the t=0 (as it usually occurs), then the solution of the equation (30) will inevitably have discontinuities that propagate with eiconal's satisfying equation (31). This means that all complex forms fn(t) must have a discontinuity at the point t=0. Therefore, despite the choice of a complex form f0(t), any ``ray series'' descriptions of the wave field are equivalent in the sense that was introduced earlier.
Of course, a choice of f0(t) influences accuracy of wave field approximation
behind the wave front , but in any case, convergence of the
series (28) can be guaranteed only in a neighborhood of wave front
(Babich, 1961).
If f0(t)=Rq<<933>>0(t) then series (28) represents ordinary Tailor's expansion in a neighborhood of the front (in the case of the ``weak discontinuity'', q0=2).
In the general case
We see that usage of discontinuities is absolutely equivalent to ray series approach. Both approaches give the same geometrical law of wave propagation and the same behavior of wave amplitudes during propagation.
If the senior discontinuity has the order q0, then the equivalence of the order q0 corresponds to the zero-approximation of ray series; equivalence of the order q0+1 corresponds to the first-order ray-series approximation and so on.
Usually the value of q0 does not matter. So it will be convenient to write
, if there is such an order q0
that
for all
, but not for r<0. With this agreement,
zero-approximation corresponds to (0)-equivalence, first-order ray-series
approximation corresponds to (1)-equivalence, and so on. Usually we
shall omit symbol (0) (so
).