next up previous [pdf]

Next: Derivatives with respect to Up: Gradient of the objective Previous: Gradient of the objective

Derivatives with respect to moveout parameters

The computation of the derivatives of 3 with respect to each vector of local-moveout parameters is easily evaluated using the following expression:

$\displaystyle \frac {\partial {J_{\rm Local}}} {{\boldsymbol \mu}_{\overline{x}...
...rline{x}}\right) ,{\bf B}_{\overline{x}} C\left({\tau};{s}_{0}\right) \right] .$ (A-12)

The linear operator $ {\frac {\partial \mathcal M_{\overline{x}}} {\partial {\boldsymbol \mu}_{\overline{x}}}}$ has the dimensions $ \left(N_{\Delta {x_{g}}}N_{{\tau}}\times {N_{{\mu}}}_{{\overline{x}}}\right)$ and is given by

$\displaystyle {\frac {\partial \mathcal M_{\overline{x}}} {\partial {\boldsymbo...
...t) \right] \frac{\partial {\theta}}{\partial {\boldsymbol \mu}_{\overline{x}}},$ (A-13)

where $ \stackrel{.}{C}\left({\tau};{s}_{0}\right)
=
C\left({\tau}\right)\left[
{\wide...
...}} }\left({t};{s}_{0}\right)
,
{\stackrel{.}{{P}}}_{D}\left({t}\right)
\right]
$ , with $ {\stackrel{.}{{P}}}_{D}$ being the time derivative of the recorded-data traces. For the choice of moveout parameters expressed in equation 6 we have $ \partial {\theta}/\partial {\boldsymbol \mu}_{\overline{x}}=\partial {\theta}/\partial {\mu_C}=
\Delta {x_{g}}^2$ .

Similarly, the evaluation of the derivatives of 7 with respect to each shift parameter $ {\boldsymbol \mu}$ is easily carried out by the following:

$\displaystyle \frac {\partial {J_{\rm Global}}} {\partial {\boldsymbol \mu}} = ...
...rline{x}}\right) ,{\bf B}_{\overline{x}} C\left({\tau};{s}_{0}\right) \right] ,$ (A-14)

where the linear operator $ {\frac {\partial \mathcal M} {\partial {\boldsymbol \mu}}}$ is given by

$\displaystyle {\frac {\partial \mathcal M} {\partial {\boldsymbol \mu}} } = \ma...
...}\right) \right] \right\} \frac{\partial {\theta}}{\partial {\boldsymbol \mu}}.$ (A-15)

When the moveout parameters are simple trace-by-trace phase shifts, as defined in equation 10, it results that $ {\partial {\theta}}/{\partial {\boldsymbol \mu}}=1$ .

On a practical note, the preceding expressions look more daunting than they are in practice. They greatly simplify in the important case when the gradient is evaluated for $ \bar{{\boldsymbol \mu}}_{\overline{x}}=0$ and $ \bar{{\boldsymbol \mu}}=0$ . This simplifying condition is actually always fulfilled unless the optimization algorithm includes inner iterations for fitting the moveout parameters using a linearized approach. Under these conditions, equations 12 and 13 become, respectively,

$\displaystyle \left. \frac {\partial {J_{\rm Local}}} {{\boldsymbol \mu}_{\over...
... {\bf S}_{\overline{x}} {{\bf B}_{\overline{x}} C\left({\tau};{s}_{0}\right) },$ (A-16)

and

$\displaystyle \frac {\partial \mathcal M_{\overline{x}}} {\partial {\boldsymbol...
...}\right) } \frac{\partial {\theta}}{\partial {\boldsymbol \mu}_{\overline{x}}}.$ (A-17)

Similarly, equations 14 and 15 become

$\displaystyle \left. \frac {\partial {J_{\rm Global}}} {\partial {\boldsymbol \...
... {\bf S}_{\overline{x}} {{\bf B}_{\overline{x}} C\left({\tau};{s}_{0}\right) },$ (A-18)

and

$\displaystyle \frac {\partial \mathcal M} {\partial {\boldsymbol \mu}} = {\bold...
...t({\tau};{s}_{0}\right) } \frac{\partial {\theta}}{\partial {\boldsymbol \mu}}.$ (A-19)


next up previous [pdf]

Next: Derivatives with respect to Up: Gradient of the objective Previous: Gradient of the objective

2010-05-19