Wave-equation tomography by beam focusing

Biondo Biondi

ABSTRACT

Velocity can be estimated using a wave-equation operator by maximizing an
objective function that measures the flatness of the crosscorrelation computed
between a source wavefield and a receiver wavefield. The proposed objective
function depends on the parameters of a residual moveout applied to the com-
puted correlation. It is composed of two terms: the first term maximizes the
energy of the stack computed on local subarrays as a function of the local cur-
vature. The second term maximizes the power of the stack computed globally
as a function of time shifts applied to the stacks of the local subarrays. The
first terms is essential to assure global convergence in presence of large velocity
errors. The second term plays a role in estimating localized velocity anomalies.
Numerical examples of computation of the gradients of the proposed objective
function confirm its potential for velocity estimation.

INTRODUCTION

Tomographic velocity estimation based on wave-equation operators can improve seis-
mic imaging in areas where wavefield-continuation migration is needed. However, it
is well-known that the straightforward application of waveform inversion to estimate
migration velocity fails to converge to an accurate model when the starting model
is too far from the correct one. This failure to converge is caused by the non-linear
relationship between data amplitudes and velocity. To avoid this failure the velocity-
estimation problem can be formulated in the image domain as the maximization (or
minimization) of objective functions that are more sensitive to the data kinemat-
ics than to the data amplitudes. Two important examples of this approach are the
Wave-Equation Migration Velocity Analysis (WEMVA) method (Biondi and Sava,
1999; Sava and Biondi, 2004a,b; Sava, 2004) and the Differential Semblance Opti-
mization (DSO) (Symes and Carazzone, 1991; Shen, 2004; Shen et al., 2005). Luo
and Schuster (1991) introduced a method based on a kinematic objective function to
solve the problem of transmission tomography. Both their method and the WEMVA
method suffer from the drawback that they require the picking of kinematic param-
eters: correlation lag in one case (Luo and Schuster, 1991), and a residual migration
parameter for WEMVA.

In this paper I develop a framework to update migration velocity by maximizing
an objective function defined in the image domain. The objective function is defined
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as a function of moveout parameters but velocity updating can be performed without
explicit picking of the residual moveout parameters. Therefore, it overcomes one
of the main difficulties of the WEMVA methods. The methodology is general and
can be thus used to optimize the image as a function of arbitrary residual moveout
parameters, and possibly of residual migration parameters.

I also introduce a new objective function that overcomes limitations of known
methods. This novel objective function has two components: the first term measures
the power of the stack over local subarrays (beams) as a function of the moveout
curvature. The second term measures the power of the stack across the beams as
a function of a bulk-shift of each beam. I then apply the general theory to the
computation of the gradient of the proposed objective function with respect to velocity
perturbations.

I develop the theory and show the results of numerical tests for a transmission
tomography problem because transmission tomography is simpler than reflection to-
mography, and therefore better suited to the illustration of the basic concepts. I leave
to future reports the application to reflection tomography of the method developed
for transmission tomography in this report.

THEORY

In this section I develop the general theory for a transmission tomography problem
because it is simpler than reflection tomography. In transmission tomography, the
data are recorded after only one propagation path through the medium, as opposed
to the downgoing and upgoing paths of a typical reflection tomography problems.
Furthermore, in transmission tomography there is no need to image and locate re-
flectors in depth, which is a major hurdle in reflection tomography. However, the
application to reflection tomography of the theory presented in this paper should be
fairly straightforward. I propose to solve the transmission tomography problem by
maximizing an objective function based on the correlation between recorded data and
modeled data. This correlation is analogous to the correlation between source and
receiver wavefields required by migration imaging condition.

To further simplify the theoretical development, I define an objective function that
rewards consistency of the correlation computed independently for each source loca-
tion. The objective function measures correlation consistency along the receiver axis.
However, I use here the receiver axis as a proxy for the offset axis or the aperture-
angle axis in reflection tomography. The application of the concepts developed in
this paper to objective functions useful in reflection tomography should be straight-
forward, although it will require more complex notation and result in expressions for
the gradients even more complex than the ones presented here.

I define the recorded data as Pp (¢, z4, z5), and the modeled data as P (t, g4, xs; 5),
where ¢ is the recording time, x, is the receiver coordinate, x, is the source coordi-
nate, and s (z,z) is the slowness model defined in depth z and along the horizontal
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coordinate x.

The cross-correlation C' (7) between the recorded data and the modeled data is
defined as a function of the correlation time lag 7 as

C () |P(),Po(®)] =Y Pt—7)Po(t). 1)

I introduce an objective function that maximizes the flatness of the correlation
function along the receiver axis for all values of the lag 7. In particular, I aim
to maximize local correlation flatness after subdividing the receiver array into local
subarrays. To extract the correlation for each subarray centered at 7y, I apply a local
beam-decomposition operators Bz. Within in each subarray, traces are defined by

the local offset Ax,. The dimensions of each Bz are thus (N Az, Nr X ngNT).

Given a background slowness s, we can compute the correlation in equation 1.
In each subarray, the correlation can be flattened by the application of Nz moveout
operators Mz; that is

C (7 + 0 (115)) [ P (550, Po (8)] = Mz [0 (125) . BoC (73:50)], )

where p are the moveout parameters and 6 are the corresponding time shifts. I
further define the local stacking operator Sz that sums the correlation traces along
the local offset axis Az,.

I can now introduce the first, and local, term of the objective function that mea-
sures the flatness of the correlation within each subarray as:

Tt (12(5) = 3 3037 I8Me 0 (1 (5)), BoC (mssoll 3. (3)

Ts Tg

This objective function is not a direct function of the slowness s, but it depends indi-
rectly from it through the moveout parameters . These parameters are the solutions
of N, X Nz, independent fitting problems, one for each subarray and source location.
These auxiliary objective functions measure the zero lag of the cross-correlation be-
tween the correlation computed for a realization of the slowness function s and and
the moved-out correlation computed with the background slowness s,

JrL (Hz) = C(7=0) [Mz[0 (1), BzC (75 50)], BzC (75 5)]
= (Mz[0 (pz), BzC (75 50)], BzC (75 5)), (4)

where with the notation (x,y) I indicate the inner product of the vectors x and y.
This inner product spans the time-lag axis 7 and the local offset axis Az,. The local
moveout parameters are the solutions of the following maximization problem:

max Jpr, () - (5)

xT
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For velocity estimation, the most effective parametrization of the moveout within
each beam is the curvature ¢, that defines the following moveout equation

0 (1z) = nolay®. (6)

Notice that when the slowness is equal to the background slowness sg, the correspond-
ing best-fitting moveout parameters iz are obviously the ones corresponding to no
moveout; that is, 6 () = 0.

As the numerical examples I show in the next section demonstrate, the beam
curvature is effective to capture the long-wavelength perturbations in the velocity
model, but is less effective to capture the short-wavelength perturbations. Accord-
ingly, a wave-equation tomography based solely on the objective function 3 may have
difficulties to estimate short-wavelength velocity perturbations.

To address this shortcoming I introduce a second, and global, term to the objective
function. This term measures flatness across the subarrays, after the local moveouts
have been applied, and is defined as,

Jaiobar (14 (5)) = % D ISM {8 (ke (), BaSeMz 0 (Bz)  BzC (3 50)1 5, (7)

where 37 assembles all the results of the stacking over the subarrays into a global
array, S is a global stacking operator, and M is a global moveout operator function
of the vector of parameter . They both operate on the result of the local stacking of
the subarrays. As in the previous case, the moveout parameters are solutions of N,
independent fitting problems, one for each source location. Similarly, these auxiliary
objective functions measure the zero lag of the cross-correlation between the local
stack of the correlation computed using the current slowness function and the local
stack of the moved-out correlation computed using the background slowness; that is,

Jra (p) =
(MA{0 (1) , xSz Mz [0 (Bz) , BzC (75 50)]}, 2zSzMz [0 (Bz) , BeC (73 5)]). (8)

In this case the inner product spans only the time-lag axis 7.

The global moveout parameters are the solutions of the following N, , maximiza-
tion problems

I chose to parametrize the global moveout as simple time shifts for each beam
center = that is, the moveout equation is

0 () = po- (10)

Notice that with this choice of moveout parameters each maximization problem in 9
is an ensemble of Nz independent problems. This consideration becomes important
when computing the gradient of the objective function.
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Combining the objective function in 3 and in 7 we define the maximization problem
that we solve to estimate slowness:

max [Jrocal (1 (5)) + €Jatobal (1 (5))] 5 (11)

where the parameter ¢ can be tuned to find an optimal relative scaling between the
local and global components, although in principle e = 1 should be effective.

Gradient of the objective function

I plan to solve the optimization problem defined in 11 by a gradient-based optimiza-
tion algorithm. Therefore, the development of an algorithm to efficiently compute
the gradient of the objective function with respect to slowness is an essential step
to make the method practical. In this section I introduce the basic methodology to
compute the gradients, and I leave some of the details to Appendix A.

The gradient of both the local objective function 3 and the global one 7 are
computed using the chain rule. The first terms of the chains are the derivatives of the
objective function with respect the moveout parameters. The second terms are the
derivatives of the moveout parameters with respect to slowness; they are computed
from the fitting objective functions 4 and 8.

Derivatives with respect to moveout parameters

The computation of the derivatives of 3 with respect to each vector of local-moveout
parameters is easily evaluated using the following expression:

8JLocaLl aMEI / _
= Sij T 0 = ,ByC 3 . 12
e o T Mz [0 (15) (73 50)] (12)
The linear operator %&“f has the dimensions (N Az, N7 X N%) and is given by
oMz ~ 00
o Mz [9 (kz), Bz C (7; 50)] o (13)

where ¢ (13 50) = C (1) [ﬁ (t;s0), Pp (t)}, with Pp being the time derivative of the
recorded-data traces. For the choice of moveout parameters expressed in equation 6
we have 90/0p; = 00/0uc = A,

Similarly, the evaluation of the derivatives of 7 with respect to each shift parameter
w is easily carried out by the following:

aJGlOba] 8/\/1’ ’ _
_ .S M- ) . B- : 14
9 = B S'S zSIM;p [9 (l’l’r) ) IC (7-7 80)] ) ( )
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where the linear operator %—A: is given by
oM _ : 00
T =M {9 (1) , Z2SsMs [e (i), Bs C (7; 30)] } o (15)

When the moveout parameters are simple trace-by-trace phase shifts, as defined in
equation 10, it results that 06/0u = 1.

On a practical note, the preceding expressions look more daunting than they are in
practice. They greatly simplify in the important case when the gradient is evaluated
for g = 0 and ;¢ = 0. This simplifying condition is actually always fulfilled unless the
optimization algorithm includes inner iterations for fitting the moveout parameters
using a linearized approach. Under these conditions, equations 12 and 13 become,
respectively,

8JLocal _ 8Mf S%SEBTO (7’7 80)7 (16)
Mz =0 al‘l’f
and OM 060
T _B_ (e ' 1
Opry =0 (7 SO)aﬂf o
Similarly, equations 14 and 15 become
aJGlobal = aﬂ S/SEjSEBfC (T7 30)7 (18>
and aM 89
OM %8B, — I
au xSx T O (7—1 SO)au ( 9)

Derivatives with respect to slowness

The evaluation of the derivatives of the moveout parameters with respect to slow-
ness follows a slightly different procedure from the one above because the moveout
parameters are solutions of the optimization problems 5 and 9. We take advantage
of the fact that we need to evaluate the derivatives only at the solution points, where
the objective functions are maximized and thus their derivatives with respect to the
moveout parameters are zero. We can therefore write:

0Jpr, (NE) _ JFL (/?l,f> -0 =
OMz 10 (p) , BzC (75 50)] B.C (7;5)
aui IJIE:ITLE ) x ) Y

and

dJra (@) 7m0 —
—0u e =Jrg (B) =0 =

OM {0 (P") , 2S5z Mz [‘9 (pff) , BzC (T; SU)]} > S M- [0 (ljlﬁ) B-C (7_, S)] _
a“ i g AT T z)» Pz )

SEP-1/0



Bionds 7 Beam wave-equation tomography

Using the rule for differentiating implicit functions, and taking advantage that the
fitting problems are all independent from each other (i.e. the cross derivatives with
respect to the moveout parameters are all zero), we can formally write:

8JpL (1)
Opz - 05 (20)
0s dJrL(pg) |
pz=pz —Z)Z:T
and ,
9Jra (1)
ol _ "o (21)
0s | ,—; 8Jrc (1)
op

Appendix A presents the analytical development of these expressions to com-
pute the derivatives of the moveout parameters with respect to slowness. As for the
derivatives of the main objective function with respect to moveout parameters, the
final results for the special case of iz = 0 and g = 0 have a fairly simple analytical
expression. The derivative of the local moveout parameters are (A-1):

(Bs € (7:50) - BPD L)

05 |z <B5 C (m; so)%, BzC (; s)>
and the derivative of the global moveout parameters are (A-2):
3# <EESEBE C (7'3 30) g_f“ EESIBEPD%>
a_ = - ) (23>
5

pz=0,u=0 <EESEB5 C (7—7 80) %, 2§Sfoc (7—, S)>

in which ¢ (1) = C (1) [ﬁ (t), Pp (t)] In both equations 22 and 23 the operator

Pp represents a convolution with the recorded data, whereas the operator aﬁ/as
is the basic wave-equation tomography operator that that links perturbations in the
slowness model to perturbations in the modeled data.

Combining the derivatives in equation 22 with the derivatives in equations 16-17
we can compute the gradient of the local objective function 3 with respect to slowness
as:

~/ 8JLocal
P . 0
vJLocal = - aa_ PD/B/f Bf C (Tv 80) aa .. o : (24>
O e (B (ris) L BC(mis))
1 11 . ~~ J/

I will now examine the effects of each of the terms in equation 24 starting from the
rightmost one. The third term (III) produces a scalar for each local curvature pa-
rameter pc. This scalar multiplies the traces in each beam, after they have been
differentiated in time and scaled by 00/, as described by the second term (II).
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Notice that the phase introduced by the time derivative of the correlation function in
(IT) is crucial for the successful backprojection into the slowness model that is accom-
plished by the first term (I). In this term, first BZ projects the traces of each individual
beam into the space of the global array, then the convolution with the recorded data
Pp’ time shifts the correlation function by the time delay of the events. Finally, the
adjoint of the operator P /Js backprojects the perturbation in the wavefields at the
receiver array into the slowness model.

The expression of the gradient of the global objective function 7 with respect to
slowness is similarly derived by combining the derivatives in equation 23 with the
derivatives in equations 18-19 and is the following three-terms expression:

VJgiobal =
~1

oP . 00

\88 D DzOz ai\ C(T 80) 8/1;

I it
9Jalobal
. £ : (25)
<2585B5 C (75 0) %, 3:S:BzC (7; S)>

II1

The structure of equation 25 is similar to the structure of equation 24 and the terms
have similar explanations. The only important difference is that in term II the chain
3=S% performs the stack over the local arrays and the assemblage of the stacked
traces into the global array, whereas its adjoint in term I spreads the stacked traces
back into the local arrays reforming the local beams.

NUMERICAL COMPUTATION OF SEARCH
DIRECTIONS

To test the method presented in the previous section, I computed the gradient of the
objective functions for two synthetic data sets. The first assumes a uniform slowness
error, whereas the second assumes a localized velocity error. In both cases the correct
velocity was constant and equal to 1 km/s. Both sets of experiments were computed
assuming 50 shots at the surface (actually at 50 meters depth) spaced 80 meters apart,
and the receiver array at a depth of 950 meters. The data modeled with a uniform
slowness error were recorded by a split-spread array of 512 receivers spaced 10 meters
apart, whereas the data modeled with a localized velocity error were recorded by a
split-spread array of 720 receivers spaced 10 meters apart. In both cases, the receiver
array was moving along with the shots, to maintain a uniform offset coverage for
each shot. For the sake of clarity, for all the cases the figures display the search
directions instead of the gradients. Also notice that I am showing separately the
search directions computed for each term of the proposed objective function, without
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puted wusing conventional full-
waveform inversion with a posi-
tive small (0.1%) uniform slowness
error: a) slowness perturbations
and b) slowness perturbations av-
eraged over the horizontal direc-
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tion. [CR|] e =

showing their sum. At the moment of writing this report, I am not confident of the
relative scaling between the gradient computed for the local objective function and
the gradient computed for the global one.
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Uniform velocity error

I compare the results obtained for the uniform velocity error case with the corre-
sponding gradient obtained from conventional full-waveform inversion. To compute
the search directions As for full-waveform inversion I applied the following expression:

ZZ [ (t, 24, 253 50) — P (t,wg,xs)]. (26)

Figures 1-2 show the search direction obtained by applying expression 26. Panels a)
show the velocity perturbations for each z and x of the model; panels b) show the
velocity perturbation averaged over the horizontal direction. As expected, the search
direction computed using expression 26 is pointing in the correct direction when the
velocity error is small (0.1%), Figure 1. However, when the velocity error is large the
search direction has the wrong polarity (8.0%), Figure 2.

Figure 2 illustrates the limitations of full-waveform inversion when applied to
estimating the background velocity. I therefore applied the proposed method to the
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case with a large velocity error, to demonstrate that it overcomes these limitations of
full-waveform inversion.

Figure 3 shows the derivatives of the objective function with respect to the move-
out parameters computed using equations 16-17 and 18-19. The plot in panel a)
displays the derivatives with respect to the local curvature, pc; the plot in panel b)
displays the derivatives with respect to the time shifts of the beam centers, py. In
both cases the derivatives are plotted as a function of the beam center coordinate,
7, for the source location at x, = 2.56 km; that is, in the middle of the model. As
visible from the figure, I clipped to zero the derivatives for both parameters outside
of the —1.7 km <7 < 1.7 km range to avoid edge effects.

Figure 3a clearly shows that the local curvature is an appropriate parameters to
measure the effects of large-scale velocity errors. In contrast, the alternating signs of
the time shift derivatives shown in Figure 3b demonstrates that such perturbations
are not well captured by the global moveout parameters.

These observations are confirmed by Figures 4 and 5. Figure 4 shows the search
direction computed using equation 24. In contrast with the search direction com-
puted with conventional waveform inversion (Figure 2), the search direction shown in
Figure 4 has the correct polarity. It provides a good search direction, similar to the
one provided by full-waveform inversion with the small velocity error that is shown
in Figure 1.

The search direction obtained by computing the gradient of the global objective
function using equation 25 is shown in Figure 5. It shows strong edge effects and its
horizontal average (Figure 5b)) has the wrong polarity.

Localized velocity error

To analyze the interplay between the local and the global objective function, I com-
puted the search directions in the case of a spatially localized slowness error. As for
the previous examples, I computed the search directions provided by the gradient of
both the local and the global objective functions. Figure 6 shows the slowness error
that was assumed for the background slowness model sy. In addition to the horizontal
average, this figure (and the ones that follow) shows the vertical average in panel c)
at the bottom of the figure.

Similarly to Figure 3, Figure 7, shows the derivatives of the objective function
with respect to the moveout parameters computed using equations 16-17 and 18-19.
The plot in panel a) displays the derivatives with respect to the local curvature, uc;
the plot in panel b) displays the derivatives with respect to the time shifts of the
beam centers, py. In both cases the derivatives are plotted as a function of the beam
center coordinate, ¥, for the source location at xy = 2.56 km; that is, in the middle
of the model. As visible from the figure, I clipped to zero the derivatives for both
parameters outside of the —2.5 km <7 < 2.5 km range to avoid edge effects.
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Figure 3: Derivatives of the ob-
jective functions with respect to
the moveout parameters plotted
as a function of beam center co-
ordinate, 7, for the source loca-
tion at z; = 2.56 km: a) deriva-
tives of Jioca With respect to to
the local beam curvatures, e, b)
derivatives of Jgioba With respect
to the time shifts of the beam cen-
ters, pp. [CR|

Figure 4: Search direction com-
puted using the gradient of the lo-
cal objective function Jygea with
a positive large (8.0%) uniform
slowness error: a) slowness pertur-
bations and b) slowness perturba-
tions averaged over the horizontal

direction. [CR]

Figure 5: Search direction com-
puted using the gradient of the
global objective function Jgiopal
with a positive large (8.0%) uni-
form slowness error: a) slow-
ness perturbations and b) slow-
ness perturbations averaged over
the horizontal direction. [CR]
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Figure 6: The slowness error that
was assumed for the background
slowness model sp: a) slowness
perturbations, b) slowness pertur-
bations averaged over the horizon-
tal direction, and ¢) slowness per-
turbations averaged over the ver-
tical direction. [ER]
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Figure 7a clearly shows that local curvature is not as an appropriate parameter
for measuring the effects of small-scale velocity errors as it is for large-scale ones. The
alternating signs of the objective-function derivatives causes the search direction to be
highly oscillating as well. In contrast, the time-shifts derivatives shown in Figure 7b
shows a large anomaly corresponding the localized velocity error and will provide
useful slowness updates to localize the velocity anomaly.

These observations are confirmed by Figure 8 and 9. Figure 8 shows the search
direction computed using equation 24. As expected it oscillating around the velocity
anomaly. Figure 9 shows instead a nicely localized anomaly with the correct sign.
It is useful to notice that the horizontal averages of the search directions shown in
Figure 8 and 9 have opposite polarity. The average of the search direction provided
by the global component has the wrong polarity, except at the depth of the anomaly.
Whereas the average of the search direction provided by the local component has the
correct polarity. This observation confirms the analysis that local curvature carries
more reliable information for the long-wavelength component of the velocity updates
than the global time shifts, as observed when analyzing the uniform velocity error
example.

Another interesting observation can be made by computing the ratio between the
amplitudes of the slowness updates in the two cases. In the case of uniform error, the
update computed from the local curvature is larger than the other by approximately
a factor of 200. In contrast, in the case of the localized anomaly, the ratio between
amplitudes is only about 10. This difference in relative amplitudes confirms that the
two components of the objective function switch in relative importance between the
two cases.

CONCLUSIONS

To reliably estimate velocity using wavefield operators, I introduce a new objective
function that rewards flatness of the correlation between source wavefield and receiver
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Figure 7: Derivatives of the ob-
jective functions with respect to
the moveout parameters plotted
as a function of beam center co-
ordinate, T, for the source loca-
tion at xs = 2.56 km: a) deriva-
tives of Jroca With respect to to
the local beam curvatures, uc, b)
derivatives of Jgioba With respect
to the time shifts of the beam cen-
ters, ug. [CR]

Figure 8: Search direction com-
puted using the gradient of the lo-
cal objective function Jyoea with
the localized velocity error shown
in Figure 6: a) slowness pertur-
bations, b) slowness perturbations
averaged over the horizontal di-
rection, and c¢) slowness perturba-
tions averaged over the vertical di-
rection. [CR]

Figure 9: Search direction com-
puted using the gradient of the
global objective function Jgobal
with the localized velocity error
shown in Figure 6: a) slowness
perturbations, b) slowness pertur-
bations averaged over the horizon-
tal direction, and ¢) slowness per-
turbations averaged over the ver-
tical direction. [CR|]
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wavefield. The proposed objective function is maximized as a function of the slowness
model through the application of residual moveout operators to the correlation. The
first term of the objective function measures the power of the stack over local beams
as a function of the local beam curvature. Maximization of this first term ensures
global convergence in presence of large velocity errors. The second term maximizes
the global power of the stack as a function of time shifts applied to the local stack
over the beams. Maximization of this second term helps the estimation of localized
velocity errors.

I tested the application of the proposed objective function by computing its gradi-
ents for two simple problems: the estimation of a large and spatially uniform velocity
error and the estimation of a spatially localized velocity error. The computed search
directions confirm the potential of the proposed method and illustrate the different
roles played by the the local and the global terms of the objective function.
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APPENDIX A

DETAILS OF GRADIENT COMPUTATION

In this appendix I present the analytical development needed to derive equations 22-23
from equations 20-21.
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Equation 20 can be rewritten as
Opt _ &Jngﬂf)
Os Mz =z —8JE;I;£%)
OMz[0(p1s) B=C(7350) op
< Hauf ol - ’BIPD8_1:>
_ o=y
< 62M5[9(p’5),3350(7';so)] ch« (7_. S)>
Oms M=z 7 7
where,
P Mz [0 (p) ,BzC (13 8 . %0
Olitz) BCT0L M, [0(ny) B € (i) 2
Hz
00

op

+ Mz [9 (kz) Bz C (7; 80)] oy’

and in which ¢ (7) = C(7) |P(t), Pp (t)] Given the moveout parametrization

expressed in 6, 920/0u2 = 0 and the previous expression simplifies into the following:
00

> Mz [0 (1z) , BsC (75 50)] = Mz [9 (pz(s)), Bz C (7; SO)] o

o’
Consequently, the general expression for the gradient of the local moveout parameters

with respect to the slowness model is:
<MT [Q (Bz) . Bz C (75 50)} 3876;7 BTPD%>

Opz|  _ _
05 liwmie (Me[0() , Br € (75 50)| 22, B:C (7:5) )
When pi = 0, the general expression further simplifies into:
Op _ <By C (7 50)88795’BfPD%> (A-1)
s |0 <B5 C (r; so)%, B:C (7; s)>

Similar derivation can be developed for the derivative of the global moveout pa-

rameters with respect to slowness. Equation 21 can be rewritten as:

dJrc (1)
Os

dJrc (1)

op
< M0 BB DOl | 33,8, M (6 (1) BePp Y >

op
0s |,

op

w=p
< P20 B Mel0 i) BCCrsol) | 336 A [0 () BaC (7 S)]> ’

ol |
s p=i
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where,

PPMAB (1), X58:Ma [0 () , BaC' (75 50)]}

op? N
{00 3500 o2 ]
M{e(u),zfsfMg[ (A7), Bz C (T3 50)” SZ

Given the moveout parametrization in expressed in 10, 9?0/0u? = 0 and the previous
expression simplifies into:

P M0 () , sSaMz [0 (fz) , BzC (7550} _
op?

M (1), S28:M; [6 () B € (ri50)] b o

o0
op

The general expression for the gradient of the global moveout parameters with
respect to the slowness model is:

op
s

tl

pn=

M{g('a%EESEME [807’?)’]350(7350)]}%72585/\45 g(p’f)’BEPD%_}:}>
(M{0(1) Z28eMz [0(12) Bz € (7:50)| } 22, 508:Me [0 (j2) , BoC (735)])

ow’

When g = 0 and o = 0 the general expression further simplifies into:

a_l'l’ <2§Sfo C (’7_7 80) B,LUE S B PD >

0s

Ha=0,n=0 <E§STB5 C (73 50) g—,“ 328:BzC (7; 5)> |

(A-2)
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