ABSTRACTWe present a method for efficiently flattening 3D seismic data volumes. First local dips are calculated over the entire seismic volume. The dips are then resolved into time shifts using a Gauss-Newton iterative approach that exploits the Fourier domain to maximize efficiency. To handle faults (discontinuous reflections), we apply a weight inversion scheme. This approach successfully flattens a synthetic faulted model, a field salt peircement dataset, a field dataset with an angular unconformity, and a faulted field dataset. |