next up previous [pdf]

Next: Tilted elliptical-cylindrical coordinates Up: 3D plane-wave migration Previous: Full plane-wave phase-encoding migration

Inline delayed-shot migration

An alternate 3D migration formulation is to phase-encode individual sail lines for a given ray parameter, $ p_{\xi_1}$, solely according to inline source position. This phase-encoding approach is related to conical-wave migration, which requires $ j-l=0$ in equation 3. However, I choose to not make this restriction because it is realized only by straight sail lines and non-flip-flop sources (Liu et al., 2006). Rather, I present an alternative theory of inline delayed-shot migration that allows more general crossline source and receiver distribution.

Inline delayed-shot wavefields, propagated through the migration domain to generate the full source and receiver wavefield volumes, are defined by

$\displaystyle \overline{S(\boldsymbol{\xi}\vert\omega )}= \sum_{l=1}^A \sum_{j=...
...\xi}\vert\omega ) f(\omega )
{\rm e}^{ i\omega [p_{\xi_1} \Delta \xi_1 (j-p)]},$     (7)
$\displaystyle \overline{R(\boldsymbol{\xi}\vert\omega )}= \sum_{l=1}^A \sum_{k=...
...xi}\vert\omega ) f(\omega )
{\rm e}^{ i \omega [p_{\xi_1} \Delta \xi_1 (k-p)]},$     (8)

where $ j$ and $ k$ are the source and receiver inline position, respectively, $ B$ is the number of inline records, $ l$ is the sail line index out of a total of $ A$ sail lines, and $ p$ is a reference inline index.

An image volume $ I(\boldsymbol{\xi})$ is generated from a series of inline delayed-shot migration images, $ I_l^{DS}(\boldsymbol{\xi}\vert p_{\xi_1})$, formed by correlating the composite inline source and receiver wavefields and stacking the results over frequency. The inline delayed-shot migration kernel mixes source and receiver wavefield energy, $ S_{jl}(\boldsymbol{\xi}\vert\omega )$ and $ R_{kl}(\boldsymbol{\xi}\vert\omega )$, according to

$\displaystyle I(\boldsymbol{\xi})$ $\displaystyle =$ $\displaystyle \sum_{l=1}^A \sum_{p_{\xi_1}} \sum_{j=1}^B
\sum_{k=1}^B I^{DS}_{jkl}(\boldsymbol{\xi}\vert p_{\xi_1})  $ (9)
$\displaystyle  $ $\displaystyle =$ $\displaystyle \sum_{l=1}^A \sum_{p_{\xi_1}} \sum_{j=1}^B \sum_{k=1}^B
\sum_{\om...
...ldsymbol{\xi}\vert\omega )
{\rm e}^{ i \omega [ p_{\xi_1} \Delta \xi_1 (j-k)]},$  

Similar to plane-wave migration, mixing wavefields of differing $ S_{jl}$ and $ R_{kl}$ indices will introduce crosstalk into the image volume. However, inline delayed-shot migration will be crosstalk-free in the following limit:

$\displaystyle \lim_{N_{p_{\xi_1}} \rightarrow \infty} \sum_{\alpha = -N_{p_{\xi...
... \Delta p_{\xi_1} \Delta {\xi_1} (j-k) } = \vert \omega \vert^{-1} \delta_{jk},$ (10)

Defining $ \vert f(\omega )\vert^2=\vert\omega \vert$ and using the approximation in equation 10, I rewrite

$\displaystyle I_l^{DS}(\boldsymbol{\xi}) \approx \sum_{j=1}^B \sum_{\omega }S_{jl}^*(\boldsymbol{\xi}\vert\omega ) R_{jl}(\boldsymbol{\xi}\vert\omega ).$ (11)

Stacking over all inline delayed-shot sail-line migration results yields the full image volume,

$\displaystyle I(\boldsymbol{\xi}) \approx \sum_{l=1}^A I_l^{DS}(\boldsymbol{\xi...
...a }S_{jl}^*(\boldsymbol{\xi}\vert\omega ) R_{jl}(\boldsymbol{\xi}\vert\omega ).$ (12)

This proves the equivalence of inline delayed-shot and shot-profile migration.
next up previous [pdf]

Next: Tilted elliptical-cylindrical coordinates Up: 3D plane-wave migration Previous: Full plane-wave phase-encoding migration

2009-05-05