next up previous [pdf]

Next: About this document ... Up: Shragge: Generalized-coordinate ADCIGs Previous: Acknowledgments

Bibliography

Lee, M. W. and S. Y. Suh, 1985, Optimization of one-way wave-equations (short note): Geophysics, 50, 1634-1637.

Appendix A

ADCIG coordinate transform

This appendix addresses how to express operators $ \frac{\partial}{\partial x_3}$ and $ \frac{\partial}{\partial h_{x_1}}$ in generalized coordinate systems to derive equation 10. I first assume that generalized coordinate systems are related to the Cartesian variables through a bijection (i.e., one-to-one mapping)

$\displaystyle x_1 = f(\xi_1,\xi_3) \quad {\rm and} \quad x_3 = g(\xi_1,\xi_3)$ (26)

with a non-vanishing Jacobian of coordinate transformation, $ J_{\boldsymbol{\xi}}$. The bijection between a generalized and Cartesian coordinate system allows us to rewrite the left-hand-sides of equations 7 as (, )

$\displaystyle \frac{\partial t}{\partial {x_1}} = \frac{1}{J_{\boldsymbol{\xi}}...
...rac{1}{J_{\boldsymbol{\xi}}}\frac{\partial (x_1,t) }{ \partial (\xi_1,\xi_3) }.$ (27)

Expanding the Jacobian notation leads to
$\displaystyle \left[ \begin{array}{c}
\frac{\partial t}{\partial \xi_1}\frac{\p...
...egin{array}{c}
{\rm sin}   \alpha \\
{\rm cos}   \alpha
\end{array} \right].$     (28)

The right-hand-sides of equations A-3 are analogous to those derived by (). Cross-multiplying the expressions by factors $ \frac{\partial
x_1}{\partial \xi_3}$ and $ \frac{\partial x_3}{\partial \xi_3}$
$\displaystyle \left[ \begin{array}{c}
\frac{\partial
x_1}{\partial \xi_3}
\left...
... \\
\frac{\partial x_3}{\partial \xi_3} {\rm cos}  \alpha
\end{array} \right]$     (29)

and adding the two expressions results in

$\displaystyle \frac{\partial t}{\partial \xi_3}\left( \frac{\partial x_3}{\part...
...in}  \alpha + \frac{\partial x_3}{\partial \xi_3} {\rm cos}   \alpha \right).$ (30)

A similar argument can be used to construct the equations for the subsurface-offset axis. The bijection between the generalized coordinate and Cartesian subsurface-offset axes allows for the left-hand-side of equations 7 to be rewritten as

$\displaystyle \frac{\partial t}{\partial h_{x_1} } = \frac{1}{J_{\boldsymbol{h}...
...\boldsymbol{h}}}\frac{\partial (h_{x_1},t) }{ \partial (h_{\xi_1},h_{\xi_3}) },$ (31)

where $ J_{\boldsymbol{h}}$ is the subsurface-offset Jacobian of transformation. Expanding the Jacobian notation leads to
$\displaystyle \left[ \begin{array}{c}
\frac{\partial t}{\partial h_{\xi_1}}\fra...
...egin{array}{c}
{\rm cos}   \alpha \\
{\rm sin}   \alpha
\end{array} \right].$     (32)

The right-hand-side of equations A-7 are again analogous to those given by (). Cross-multiplying the expressions by factors $ \frac{\partial h_{x_1}}{\partial h_{\xi_1}}$ and $ \frac{\partial h_{x_3}}{\partial h_{\xi_1}}$
$\displaystyle \left[ \begin{array}{c}
\frac{\partial h_{x_1}}{\partial h_{\xi_1...
...{\partial h_{x_3}}{\partial h_{\xi_1}}
{\rm sin}   \alpha
\end{array} \right],$     (33)

and subtracting the two expressions above yields

$\displaystyle \frac{\partial t}{\partial h_{\xi_1}}\left( \frac{\partial h_{x_1...
... \alpha - \frac{\partial h_{x_3}}{\partial h_{\xi_1}} {\rm sin} \alpha \right).$ (34)

An expression for ADCIGs can be obtained by dividing equation A-9 by equation A-5

$\displaystyle \frac{\frac{\partial t}{\partial h_{\xi_1}}}{\frac{\partial t}{\p...
...os}  \alpha + \frac{\partial x_1}{\partial \xi_3} {\rm sin}  \alpha \right)}.$ (35)

One question arising from the geometric factors in equation A-10 is what do the terms $ \frac{\partial h_{x_1}}{\partial h_{\xi_1}}$, $ \frac{\partial h_{x_3}}{\partial h_{\xi_1}}$, $ \frac{\partial h_{x_1}}{\partial h_{\xi_3}}$ and $ \frac{\partial h_{x_3}}{\partial h_{\xi_3}}$ represent? I assume that the subsurface offset axes are generated by uniform wavefield shifting such that the following equations are valid:

$\displaystyle \left[\begin{array}{c}
h_{x_1} \\
h_{x_3} \\
h_{\xi_1}\\
h_{\x...
...x_1}{\partial \xi_3}\\
\frac{\partial x_3}{\partial \xi_3}
\end{array}\right].$     (36)

If the subsurface offset axes were generated by anything other than uniform shifting (e.g. $ h_{x_1} = x_1^2$), then the assumptions behind equations A-11 would not be honored.

Using these identities in equation A-5 reduces equation A-10 to

$\displaystyle - \left. \frac{\partial \xi_3}{\partial h_{\xi_1}}\right\vert _{\...
...os}  \alpha + \frac{\partial x_1}{\partial \xi_3} {\rm sin}  \alpha \right)},$ (37)

where the two Jacobian transformations are equivalent (i.e. $ J_{\boldsymbol{\xi}}=J_{\boldsymbol{h}}$). This completes the derivation of equation 10.
next up previous [pdf]

Next: About this document ... Up: Shragge: Generalized-coordinate ADCIGs Previous: Acknowledgments

2009-04-13