next up previous print clean
Next: Mixed-domain solutions to the Up: Sava and Fomel: Riemannian Previous: Acoustic wave-equation in 3-D

One-way wave-equation in 3-D Riemannian spaces

Equation (6) can be used to describe two-way propagation of acoustic waves in a semi-orthogonal Riemannian space. For one-way wavefield extrapolation, we need to modify the acoustic wave equation (6) by selecting a single direction of propagation.

In order to simplify the computations, we introduce the following notation:
   \begin{eqnarray}
\c_{\zeta\zeta}&=& \frac{1 }{\AA^2} \;, \nonumber \\ \c_{\xi\xi...
 ...{\partial } {\partial \xi } \left(F\frac{\AA}{J}\right) \right]\;.\end{eqnarray}
(8)
All quantities in equations (8) can be computed by finite-differences for any choice of a Riemannian coordinate system which fulfills the orthogonality condition indicated earlier. In particular, we can use ray coordinates to compute those coefficients. With these notations, the acoustic wave-equation can be written as:  
 \begin{displaymath}
\c_{\zeta\zeta}\frac{\partial^2 \mathcal{U}}{\partial \zeta^...
 ...rtial \xi\partial \eta} = - \frac{\omega^2}{v^2} \mathcal{U}\;.\end{displaymath} (9)
For the particular case of Cartesian coordinates ($\c_{\xi}=\c_{\eta}=\c_{\zeta}=0, \c_{\xi\xi}=\c_{\eta\eta}=\c_{\zeta\zeta}=1, \c_{\xi\eta}=0$), the Helmholtz equation (9) takes the familiar form
\begin{displaymath}
\frac{\partial^2 \mathcal{U}}{\partial \zeta^2}
 + \frac{\pa...
 ...al{U}}{\partial \eta^2}
 = -\frac{\omega^2}{v^2} \mathcal{U}\;.\end{displaymath} (10)

From equation (9), we can directly deduce the modified form of the dispersion relation for the wave-equation in a semi-orthogonal 3-D Riemannian space:  
 \begin{displaymath}
- \c_{\zeta\zeta}k_\zeta^2
- \c_{\xi\xi}k_\xi^2
- \c_{\eta\e...
 ...\c_{\eta}k_\eta
- \c_{\xi\eta}k_\xi k_\eta= - \omega^2\ss^2 \;.\end{displaymath} (11)
For one-way wavefield extrapolation, we need to solve the second order equation (11) for the wavenumber of the extrapolation direction $k_\zeta$,and select the solution with the appropriate sign to extrapolate waves in the desired direction:  
 \begin{displaymath}
k_\zeta= i \frac{\c_{\zeta}}{2\c_{\zeta\zeta}} \pm
\sqrt{
\f...
 ...right]
- \frac{\c_{\xi\eta}}{\c_{\zeta\zeta}} k_\xi k_\eta
}\;.\end{displaymath} (12)
The solution with the positive sign in equation (12) corresponds to propagation in the positive direction of the extrapolation axis $\zeta$.

For the particular case of Cartesian coordinates ($\c_{\xi}=\c_{\eta}=\c_{\zeta}=0, \c_{\xi\xi}=\c_{\eta\eta}=\c_{\zeta\zeta}=1, \c_{\xi\eta}=0$), the one-way wavefield extrapolation equation takes the familiar form
\begin{displaymath}
k_\zeta= \pm\sqrt{\left(\omega\ss\right)^2 -k_\xi^2 - k_\eta^2}\;.\end{displaymath} (13)


next up previous print clean
Next: Mixed-domain solutions to the Up: Sava and Fomel: Riemannian Previous: Acoustic wave-equation in 3-D
Stanford Exploration Project
10/14/2003