next up previous print clean
Next: One-way wave-equation in 3-D Up: Sava and Fomel: Riemannian Previous: Introduction

Acoustic wave-equation in 3-D Riemannian spaces

The Laplacian operator of a scalar function $\mathcal{U}$ in an arbitrary Riemannian space with coordinates $\{\xi_1,\xi_2,\xi_3\}$ has the form  
 \begin{displaymath}
 \Delta \mathcal{U}= \sum_{i=1}^{3}\frac{1}{\sqrt{\vert\math...
 ...g}\vert}\,
 \frac{\partial \mathcal{U}}{\partial \xi_j}\right),\end{displaymath} (1)
where gij is a component of the associated metric tensor, and $\vert\mathbf{g}\vert$ is its determinant Synge and Schild (1978).

The expression simplifies if one of the coordinates (e.g. the coordinate of one-way wave extrapolation) is orthogonal to the other coordinates. Let $\xi_1=\xi$,$\xi_2=\eta$, and $\xi_3=\zeta$, with $\zeta$ orthogonal to both $\xi$ and $\eta$. Then the metric tensor has the matrix  
 \begin{displaymath}
 \left[g_{ij}\right] = \left[\begin{array}
{ccc}
 E& F& 0 \\  F& G& 0 \\  0 & 0 & \AA^2
 \end{array}\right]\;,\end{displaymath} (2)
where E, F, G, and $\AA$ are differential forms that can be found from mapping Cartesian coordinates $\bf{x}$ to the general coordinates $\{\xi,\eta,\zeta\}$, as follows:
            \begin{eqnarray}
E& = & \bf{x}_{\xi} \cdot \bf{x}_{\xi}\;, \nonumber \\ F& = & \...
 ...;, \nonumber \\ \AA^2 & = & \bf{x}_{\zeta} \cdot \bf{x}_{\zeta}\;.\end{eqnarray}
(3)
The associated metric tensor has the matrix  
 \begin{displaymath}
 \left[g^{ij}\right] =
 \left[\begin{array}
{ccc}
 +G/J^2 & ...
 ... -F/J^2 & +E/J^2 & 0 \\  0 & 0 & 1/\AA^2
 \end{array}\right]\;,\end{displaymath} (4)
where $J^2 = E\,G-F^2$. The metric determinant takes the form  
 \begin{displaymath}
 \vert\mathbf{g}\vert = \AA^2\,J^2\;.\end{displaymath} (5)

Substituting equations (4) and (5) into (1), we can modify the Helmholtz wave equation  

 \begin{displaymath}
 \Delta\mathcal{U}= - \frac{\omega^2}{v^2 \left(\mathbf{x} \right)} \mathcal{U}\end{displaymath}

for propagating waves in a 3-D Riemannian space:
   \begin{eqnarray}
\frac{1}{\AA\,J}
\left[
\frac{\partial } {\partial \zeta } \lef...
 ...tial \xi }
\right)
\right]
= - \frac{\omega^2}{v^2} \mathcal{U}\;.\end{eqnarray} (6)
In equation (6), $\omega$ is temporal frequency, $v\left[\bf{x}\left(\xi,\eta,\zeta\right)\right]$ is the wave propagation velocity, and $\mathcal{U}$ represents a propagating wave.

For the special case of two dimensional spaces (F=0 and G=1), the Helmholtz wave equation reduces to the simpler form:  
 \begin{displaymath}
\frac{1}{\AA J}
\left[\frac{\partial } {\partial \zeta } \le...
 ...l \xi } \right) \right]
= - \frac{\omega^2}{v^2} \mathcal{U}\;,\end{displaymath} (7)
which corresponds to a curvilinear orthogonal coordinate system.

Particular examples of coordinate systems for one-way wave propagation are:

Cartesian (propagation in depth):
$x_1=\xi$, $x_2=\eta$, $x_3=\zeta$,
\begin{eqnarraystar}
E& = & G\quad = \quad \AA \quad = \quad J\quad = \quad 1\;, \\  F& = & 0\;.
 \end{eqnarraystar}
Cylindrical (propagation in radius):
$x_1=\zeta\,\cos{\xi}$, $x_2=\zeta\,\sin{\xi}$, $x_3=\eta$,
\begin{eqnarraystar}
E& = & J\quad = \quad \zeta^2\;, \\  G& = & \AA \quad = \quad 1\;, \\  F& = & 0\;.
 \end{eqnarraystar}
Spherical (propagation in radius):
$x_1=\zeta\,\sin{\xi}\,\cos{\eta}$, $x_2=\zeta\,\sin{\xi}\,\sin{\eta}$, $x_3=\zeta\,\cos{\xi}$,
\begin{eqnarraystar}
E& = & \zeta^2\;, \\  G& = & \zeta^2\,\sin^2{\xi}\;, \\  \AA & = & 1\;, \\  J& = & \zeta^2\,\sin{\xi}\;, \\  F& = & 0\;.
 \end{eqnarraystar}
Ray family (propagation along rays):
$\xi$ and $\eta$ represent parameters defining a particular ray in the family (i.e. the ray take-off angles), J is the geometrical spreading factor, related to the cross-sectional area of the ray tube Cervený (2001). The coefficients E, F, G, and J are easily computed by finite-difference approximations with the Huygens wavefront tracing technique Sava and Fomel (2001). If the propagation parameter $\zeta$ is taken to be time along the ray, then $\AA$ equals the propagation velocity v.

next up previous print clean
Next: One-way wave-equation in 3-D Up: Sava and Fomel: Riemannian Previous: Introduction
Stanford Exploration Project
10/14/2003