next up previous print clean
Next: REFERENCES Up: Appendix Previous: New notations and definitions

Downward continuation

Given the values of the function $P\left( {\forall \vec x,z,\forall
\omega } \right)$, downward continuation consists of finding the values of $P\left( {\forall \vec x,z + \delta z,\forall \omega }
\right)$. An expression describing this process lays at the end of the following proof:

Obtain the Helmholtz equation by applying the Fourier transform defined by (24) to the wave equation (22) while taking into account the notation (26) and the property (25) and rearranging:

 
 \begin{displaymath}
\Delta P + P_{zz} + m^2 P = 0.\end{displaymath} (29)

By derivating relation (28) with respect to x and z we obtain:

 
 \begin{displaymath}
P_{x_i } = Q_{x_i } e^{i\bar mz} ,\end{displaymath} (30)
 
 \begin{displaymath}
\Delta P = \left( {\Delta Q} \right)e^{i\bar mz} ,\end{displaymath} (31)
 
 \begin{displaymath}
P_z = (Q_z + i\bar mQ)e^{i\bar mz} ,\end{displaymath} (32)
 
 \begin{displaymath}
P_{zz} = (Q_{zz} + 2i\bar mQ_z - \bar m^2 Q)e^{i\bar mz} .\end{displaymath} (33)

By plugging into in (29) and eliminating the exponential, we get:

 
 \begin{displaymath}
\Delta Q + Q_{zz} + 2i\bar mQ_z + \left( {m^2 - \bar m^2 } \right)Q = 0.\end{displaymath} (34)

The second derivative with respect to z can be eliminated by derivating with respect to z, multiplying by $\frac{i}{{2\bar m}}$, and adding the result to (34):  
 \begin{displaymath}
\frac{i}{{2\bar m}}Q_{zzz} + \frac{i}{{2\bar m}}\left( {\Del...
 ... +
\frac{{im}}{{\bar m}}\frac{{\partial m}}{{\partial z}}Q = 0.\end{displaymath} (35)

Note that no approximation has been made between the wave equation (22) and this point. Eq. 35 is simply the wave equation in a different coordinate system. Now Qzzz is approximated by zero:  
 \begin{displaymath}
\frac{i}{{2\bar m}}\left( {\Delta Q} \right)_z + \Delta Q + ...
 ... + \frac{{im}}{{\bar
m}}\frac{{\partial m}}{{\partial z}}Q = 0.\end{displaymath} (36)

For the case of a homogenous medium, $\bar m = m$ and the equation turns into the familiar $45^\circ$ equation:

 
 \begin{displaymath}
\frac{i}{{2\bar m}}\left( {\Delta Q} \right)_z + \Delta Q + 2i\bar
mQ_z = 0 .\end{displaymath} (37)

The $15^\circ$ equation is obtained by neglecting the Qxxz term also:

 
 \begin{displaymath}
\Delta Q + 2i\bar mQ_z = 0 .\end{displaymath} (38)

Downward continuation proceeds by considering

 
 \begin{displaymath}
Q\left( {\forall \vec x,z,\forall \omega } \right) = P\left( {\forall \vec x,z,\forall \omega } \right)\end{displaymath} (39)

then by using one of the equations 36, 37 or 38 to find the values of $Q\left( {\forall \vec x,z +
\delta z,\forall \omega } \right)$ and by finally finding P by undoing the variable change:

 
 \begin{displaymath}
P\left( {\forall \vec x,z + \delta z,\forall \omega } \right...
 ... \omega }
\right)e^{im_{\left( {\vec x,z} \right)} \delta z} . \end{displaymath} (40)


next up previous print clean
Next: REFERENCES Up: Appendix Previous: New notations and definitions
Stanford Exploration Project
6/8/2002