next up previous print clean
Next: Downward continuation Up: Appendix Previous: The wave equation in

New notations and definitions

Until now the proof was pure physics. But because in seismology the depth axis is ``special,'' we will change notations. Axis x3 will be denoted by z, and the $\vec x$ will denote the surface position vector with the components (x1, x2). Also, the Laplacian will be the operator,

 
 \begin{displaymath}
\Delta = \frac{{\partial ^2 }}{{\partial x_1 ^2 }} + \frac{{\partial
^2 }}{{\partial x_2 ^2 }}. \end{displaymath} (23)

We will use the Fourier transform of the pressure field along the time axis:

 
 \begin{displaymath}
P\left( {\vec x,z,\omega } \right) = F\left\{ {P\left( {\vec...
 ...\infty }^\infty {P\left( {\vec x,z,t}
\right)e^{i\omega t} dt}.\end{displaymath} (24)

The following property of the Fourier transform will be needed:

 
 \begin{displaymath}
F\left\{ {\frac{{\partial ^2 P\left( {\vec x,z,t} \right)}}{...
 ...}}} \right\} = - \omega ^2 P\left( {\vec x,z,\omega } \right). \end{displaymath} (25)

The spatial frequency is defined as:

 
 \begin{displaymath}
m\left( {\vec x,z} \right) = \frac{\omega }{{v\left( {\vec x,z}
\right)}}. \end{displaymath} (26)

Let $\bar v$ be a spatial average of v in the medium, a known constant that does not depend on $\vec x$ or z. We also define

 
 \begin{displaymath}
\bar m = \frac{\omega }{{\bar v}}\end{displaymath} (27)

and the function

 
 \begin{displaymath}
Q\left( {\vec x,z,\omega } \right) = P\left( {\vec x,z,\omega }
\right)e^{ - i\bar mz}. \end{displaymath} (28)

The index notation for derivatives will be used from now on. The symbol $\forall$ will denote the phrase ``for all.''


next up previous print clean
Next: Downward continuation Up: Appendix Previous: The wave equation in
Stanford Exploration Project
6/8/2002