next up previous print clean
Next: Jacobian for Common-azimuth migration Up: Transformation Jacobians Previous: Angle-gathers

Ray-parameter gathers

For the case of offset ray-parameter gathers, we can rewrite the DSR equation (22) as
   \begin{eqnarray}
k_z
&=& {k_{\rm zs}}+ {k_{\rm zr}}\nonumber \\ &=& {\rm SSR}{\vec{{k_m}}-\omega\vec{p_h}} + {\rm SSR}{\vec{{k_m}}+\omega\vec{p_h}}.\end{eqnarray}
(26)

In this case, the imaging Jacobian becomes
   \begin{eqnarray}
\bold W_{p_h}
&=& \left.\frac{d\omega}{dk_z}\right\vert _{{\bf ...
 ...vec{p_h}\right )\cdot {\bf {p_{h}}}}{4{k_{\rm zr}}}
\right ]^{-1},\end{eqnarray}
(27)
which can be re-arranged as:
   \begin{eqnarray}
\bold W_{p_h}
&=& 
\left [\left (s-\frac{{\bf {p_{h}}}\cdot{\bf...
 ...\rm zs}}} -
 \frac{\omega s}{{k_{\rm zr}}} \right )
\right ]^{-1}.\end{eqnarray} (28)

For an arbitrary 2-D reflection geometry (Figure 1), we can write Equation (28) as  
 \begin{displaymath}
\bold W_{p_h} = 
\left [\left (s-\frac{{\bf {p_{h}}}\cdot{\b...
 ...ac{1}{\cos \left [\gamma+\alpha\right ]}\right )
\right ]^{-1}.\end{displaymath} (29)
For flat reflectors, defined by ${\bf {k}_{m}}=0$ and $\alpha=0$, the Jacobian takes the simple form  
 \begin{displaymath}
\bold W_p_h= \frac{1}{2s} \frac{1}{\cos \gamma},\end{displaymath} (30)
which is equivalent to the weighting factor introduced by Wapenaar et al. (1999).

For the case of flat reflectors, we also have  
 \begin{displaymath}
\bold W_{p_h}=\frac{1}{4s^2} \frac{1}{\bold W_k_h}.\end{displaymath} (31)
which explains the opposite behavior of the uncorrected migration amplitudes for reflection-angle gathers (Figure 10) and offset ray-parameter gathers (Figure 11).

After we apply the Jacobian weights, we obtain the corrected angle-gathers shown in Figures 12 and 13. As expected, the amplitudes are constant for the entire usable angular range.


next up previous print clean
Next: Jacobian for Common-azimuth migration Up: Transformation Jacobians Previous: Angle-gathers
Stanford Exploration Project
4/30/2001