next up previous print clean
Next: About this document ... Up: CURVED WAVEFRONTS Previous: Velocity increasing linearly with

Prior RMS velocity

Substituting the theoretical interval velocity $v(\tau)$from equation (40) into the definition of RMS velocity $V(\tau )$(equation (25)) yields:
\begin{eqnarray}
\tau \ V^2(\tau) &=& \int_{0}^{\tau} v^2(\tau') \ d \tau'
\\  &=& v_0^2 \ \frac {e^{\alpha \tau} - 1} {\alpha} .\end{eqnarray} (47)
(48)
Thus the desired expression for RMS velocity as a function of traveltime depth is:  
 \begin{displaymath}
V(\tau) \eq v_0 \ 
 \sqrt{
 \frac{e^{\alpha \tau} - 1 }{\alpha \tau}
 }\end{displaymath} (49)
For small values of $\alpha \tau$,this can be approximated as
\begin{displaymath}
V(\tau) \quad\approx \quad v_0\ \sqrt{1 + \alpha \tau / 2} .\end{displaymath} (50)


next up previous print clean
Next: About this document ... Up: CURVED WAVEFRONTS Previous: Velocity increasing linearly with
Stanford Exploration Project
12/26/2000