Next: Solving for the extrapolation
Up: REFERENCES
Previous: Generalized Riemannian Geometry
The acoustic wave-equation for wavefield,
, in a generalized
Riemannian space is
| ![\begin{displaymath}
\nabla^2\mathcal{U}= - \omega^2\ss^2 \left(\mathbf{x} \right)\mathcal{U},\end{displaymath}](img67.gif) |
(19) |
where the
is frequency,
is the propagation slowness, and
is the Laplacian operator
| ![\begin{displaymath}
\Delta \mathcal{U}= \frac{1}{\sqrt{\vert\mathbf{g}\vert}}\,...
...t(\,m^{ij}\,\frac{\partial \mathcal{U}}{\partial \xi_j}\right).\end{displaymath}](img69.gif) |
(20) |
Substituting equation 20 into 19 generates
a Helmholtz equation appropriate for propagating waves through a 3D
space
| ![\begin{displaymath}
\frac{1}{\sqrt{\left\vert \mathbf{g} \right\vert}} \frac{\pa...
...tial \W}{\partial \xi_j } \right)= - \omega^2\ss^2 \mathcal{U}.\end{displaymath}](img70.gif) |
(21) |
Expanding the derivative terms and multiplying through by
yields
| ![\begin{displaymath}
\frac{\partial m^{\ii\jj} }{\partial \xi_i } \frac{\partial ...
...t{\left\vert \mathbf{g} \right\vert}\omega^2 \ss^2 \mathcal{U}.\end{displaymath}](img72.gif) |
(22) |
Defining nj as
| ![\begin{displaymath}
n_j=\frac{\partial m^{\ii\jj} }{\partial \xi_i } =
\frac{\p...
...}}{\partial \xi_2 } +
\frac{\partial m^{3j}}{\partial \xi_3 } ,\end{displaymath}](img73.gif) |
(23) |
leads to a more compact notation of equation 22
| ![\begin{displaymath}
n_j \frac{\partial \W}{\partial \xi_j } + m^{\ii\jj} \frac{\...
...t{\left\vert \mathbf{g} \right\vert}\omega^2 \ss^2 \mathcal{U}.\end{displaymath}](img74.gif) |
(24) |
Developing a wave-equation dispersion relation is achieved by
replacing the partial differential operators acting on wavefield
with their Fourier domain duals
| ![\begin{displaymath}
\left(m^{ij} k_\xi_i-i n_j \right)k_\xi_j= \sqrt{\left\vert \mathbf{g} \right\vert}\omega^2\ss^2,\end{displaymath}](img75.gif) |
(25) |
where
is the Fourier domain dual of differential operator
. Equation 25 represents
the dispersion relationship for wavefield propagation on a generalized
3-D Riemannian space.
Next: Solving for the extrapolation
Up: REFERENCES
Previous: Generalized Riemannian Geometry
Stanford Exploration Project
1/16/2007