Next: One-way Riemannian wavefield extrapolation
Up: REFERENCES
Previous: REFERENCES
Geometry in a generalized 3D Riemannian space is described by a symmetric
metric tensor, gij=gji, that relates the geometry in a
non-orthogonal coordinate system,
, to an underlying
Cartesian mesh,
Guggenheimer (1977). In
matrix form, the metric tensor is written
| ![\begin{displaymath}
\left[g_{ij}\right]
=
\left[\begin{array}
{ccc}
g_{11} & g...
...g_{22} & g_{23} \ g_{13} & g_{23} & g_{33} \end{array}\right],\end{displaymath}](img58.gif) |
(15) |
where g11, g12, g22, g13, g23 and
are functions
linking the two coordinate systems through
| ![\begin{eqnarray}
g_{11}=\frac{\partial x_k}{\partial \xi_1}\frac{\partial x_k}{\...
...\partial x_k}{\partial \xi_3}\frac{\partial x_k}{\partial \xi_3}. \end{eqnarray}](img60.gif) |
|
| (16) |
(Summation notation - gii = g11+g22+g33 - is used in
equations throughout this paper.) The associated (or inverse) metric
tensor, gij, is defined by
, where
is metric tensor matrix determinant. The associated
metric tensor is given by
| ![\begin{displaymath}
\left[g^{ij}\right] =\frac{1}{\left\vert\mathbf{g}\right\ve...
..._{13}-g_{11}g_{23}& g_{11}g_{22}-g_{12}^2
\end{array}\right],\end{displaymath}](img63.gif) |
(17) |
and with the following metric determinant
| ![\begin{displaymath}
\vert\mathbf{g}\vert = \AA\,(g_{11}g_{22}-g_{12}^2)\, \left...
...13}^2-2g_{12}g_{23}g_{13}}{\AA(g_{11}g_{22}-g_{12}^2)} \right].\end{displaymath}](img64.gif) |
(18) |
Weighted metric tensor,
, is another useful
definition for the following development.
B
Next: One-way Riemannian wavefield extrapolation
Up: REFERENCES
Previous: REFERENCES
Stanford Exploration Project
1/16/2007