next up previous print clean
Next: POROELASTICITY ESTIMATES AND BOUNDS Up: BOUNDS ON ELASTIC CONSTANTS Previous: Voigt and Reuss Bounds

Hashin-Shtrikman Bounds

It has been shown elsewhere (Berryman, 2004a,b) that the Peselnick-Meister-Watt bounds for bulk modulus of a random polycrystal composed of hexagonal (or transversely isotropic) grains are given by  
 \begin{displaymath}
K_{PM}^\pm = \frac{K_V(G_{\rm eff}^r + \zeta_\pm)}
{(G_{\rm ...
 ...K_RG_{\rm eff}^v + K_V\zeta_\pm}
{G_{\rm eff}^v + \zeta_\pm},
 \end{displaymath} (10)
where $G_{\rm eff}^v$ ($G_{\rm eff}^v$) is the uniaxial shear energy per unit volume for a unit applied shear strain (stress). The second equality follows directly from the product formula (9). Parameters $\zeta_\pm$ are defined by  
 \begin{displaymath}
\zeta_{\pm} =
\frac{G_\pm}{6}\left(\frac{9K_\pm+8G_\pm}{K_\pm+2G_\pm}\right).
 \end{displaymath} (11)
In (11), values of $G_\pm$ (shear moduli of isotropic comparison materials) are determined by inequalities  
 \begin{displaymath}
0 \le G_- \le \min(c_{44},G_{\rm eff}^r,c_{66}),
 \end{displaymath} (12)
and  
 \begin{displaymath}
\max(c_{44},G_{\rm eff}^v,c_{66}) \le G_+ \le \infty.
 \end{displaymath} (13)
The values of $K_\pm$ (bulk moduli of isotropic comparison materials) are then determined by equalities  
 \begin{displaymath}
K_\pm = \frac{K_V(G_{\rm eff}^r-G_\pm)}{(G_{\rm eff}^v - G_\pm)},
 \end{displaymath} (14)
given by Peselnick and Meister (1965) and Watt and Peselnick (1980). Also see Berryman, 2004b).

Bounds on the shear moduli are then given by  
 \begin{displaymath}
\begin{array}
{r}
\frac{1}{\mu_{\rm hex}^\pm + \zeta_\pm} = ...
 ..._{44}+\zeta_\pm} + \frac{2}{c_{66}+\zeta_\pm}\big],\end{array} \end{displaymath} (15)
where $\gamma_\pm$ and $\delta_\pm$ are given by  
 \begin{displaymath}
\gamma_\pm = \frac{-1}{K_\pm + 4G_\pm/3} \qquad\hbox{and}\qq...
 ... \left[\frac{4}{15}
- \frac{2}{5G_\pm\gamma_\pm}\right]^{-1}.
 \end{displaymath} (16)
KV is the Voigt average of the bulk modulus as defined previously.


next up previous print clean
Next: POROELASTICITY ESTIMATES AND BOUNDS Up: BOUNDS ON ELASTIC CONSTANTS Previous: Voigt and Reuss Bounds
Stanford Exploration Project
5/3/2005