next up previous print clean
Next: Receiver wavefield extrapolation Up: REFERENCES Previous: REFERENCES

Source wavefield downward extrapolation

The recursion in equations (2) and (3) can be also written in matrix form as  
 \begin{displaymath}

( I- W^{+}) \, \, P^+= F, 
\end{displaymath} (13)

\begin{eqnarray}
\left[ \begin{array}
{cccccc} 
{1} & 0 & 0 &...& 0 & 0 \\ {-w^+...
 ...ay}
{ccccc}
f\\  0\\  0\\ ...\\  0 \end{array} \right], \nonumber
\end{eqnarray}

where

Equation (13) represents the downward continuation recursion written for a given frequency. We can write a similar relationship for each of the frequencies in the data, and group them all in a matrix relationship:  
 \begin{displaymath}
\left( {\mathcal I} - {\mathcal W}^+ \right){\mathcal P}^+={\mathcal F},

\end{displaymath} (14)
\begin{eqnarray}
\left[ \begin{array}
{cccc}
{ I- W^+(\omega_1)} & 0 &...& 0 \\ ...
 ..._2)\\  ...\\  F(\omega_{N_\omega}) \end{array} \right], \nonumber
\end{eqnarray}
where

Equation (14) represents the downward continuation recursion written for a given shot position. We can write a similar relationship for each of the shot positions in the data, and group them all in a matrix relationship:  
 \begin{displaymath}
\left( {\bf I} - {\bf W}^{+} \right){\bf P}^+={\bf f},

\end{displaymath} (15)
\begin{eqnarray}
\left[ \begin{array}
{cccc}
{ {\mathcal I- \mathcal W}^+(s_1)} ...
 ...2)\\  ...\\  {\mathcal F}(s_{N_s}) \end{array} \right], \nonumber
\end{eqnarray}
where

B


next up previous print clean
Next: Receiver wavefield extrapolation Up: REFERENCES Previous: REFERENCES
Stanford Exploration Project
5/23/2004