previous up next print clean
Next: Wave-equation Datuming for laterally Up: WAVE-EQUATION DATUMING ALGORITHM Previous: WAVE-EQUATION DATUMING ALGORITHM

Two conjugate transpose datuming algorithms

We can epitomize the datuming algorithm in a depth varying velocity by writing the successive operators in matrix form. For simplicity I will take only a datum with three depth levels similar to the one in Figure [*]. The algorithm can be generalized for any number of depth levels and any datum geometry. For each value of $\omega$ we have  
 \begin{displaymath}
\displaystyle{
\left[
 \begin{array}
{ccc}
 A&B&C
 \end{arra...
 ...
\left[
\begin{array}
{c}
P(x,z=0,{\omega})\end{array}\right]
}\end{displaymath} (6)
where $P(x,z=0,\omega)$ represents the zero-offset data after Fourier transformation along the time axis. The matrix

\begin{displaymath}
\left[
 \begin{array}
{c}
 FT \\  \end{array}\right]\end{displaymath}

performs the Fourier Transform matrix of the horizontal space variable. Therefore the matrix

\begin{displaymath}
\left[
 \begin{array}
{ccc}
 FT^* & & \\  &FT^* & \\  & &FT^* \\  \end{array}\right]\end{displaymath}

is composed of inverse Fourier Transform block matrices, each being the conjugate transpose to the direct transformation. The matrix

\begin{displaymath}
\left[
 \begin{array}
{c}
W_1\\ W_2 W_1\\ W_3 W_2 W_1\\ \end{array}\right]\end{displaymath}

contains three blocks corresponding to the product of diagonal matrices of the form  
 \begin{displaymath}
W_i=
\left[
 \begin{array}
{cccccc}
 e^{ik_{zi1} \Delta z} &...
 ...& & \\  & & & & &e^{ik_{zi6} \Delta z} \\  \end{array}\right] .\end{displaymath} (7)
On each diagonal are the phase-shifting exponentials necessary to upward extrapolate the wavefield to a depth level. The value of (kz)ij is given by the dispersion relation:

\begin{displaymath}
{(k_z)}_{ij}={\sqrt{{{\omega^2} \over v(z_i)^2}-k^2_{xj}}}.\end{displaymath}

 
Datumatrix
Figure 2
Datuming for only three depth levels. Data extrapolated to the first depth level is extracted by matrix A, to the second level by matrix B and to the third by matrix C.
Datumatrix
view

The matrices A,B,C are matrices corresponding to the shape of the datum. For the case shown in Figure [*] the matrices A,B,C are

\begin{displaymath}
A=
\left[
\begin{array}
{cccccc}
1& & & & & \\  &1& & & & \\...
 ... & & &.& & \\  & & & &1& \\  & & & & &1 \\ \end{array}.
\right]\end{displaymath}

The conjugate transpose algorithm can be obtained by reversing the order of matrix multiplication in equation (6) and transposing-conjugating each matrix. The matrices A,B,C are diagonal matrices and therefore equal to the transpose. For each value of the frequency $\omega$ the conjugate datuming is  
 \begin{displaymath}
\displaystyle{
\left[
 \begin{array}
{c}
 FT^* \\  \end{arra...
 ...ft[
\begin{array}
{c}
P(x,z_{dat},{\omega})\end{array}\right]
}\end{displaymath} (8)
where $P(x,z_{dat},\omega)$ represents the wavefield recorded on the topographic datum. The matrices W*i are conjugate transposed of the diagonal matrices Wi which are explicitly represented in equation (7).


previous up next print clean
Next: Wave-equation Datuming for laterally Up: WAVE-EQUATION DATUMING ALGORITHM Previous: WAVE-EQUATION DATUMING ALGORITHM
Stanford Exploration Project
11/17/1997