next up previous print clean
Next: Zero-offset migration Up: 11: TRUE AMPLITUDE MIGRATION Previous: 11: TRUE AMPLITUDE MIGRATION

CSP migration, 3D case

To develop true-amplitude formulas for the CSP case, we shall use the simple fact that if $A_E ({\bf r})$ is the amplitude of the discontinuity received as a result of wave-field continuation with the amplitude-equivalent operator ${\bf P}_E^{(-)} (v)$ with the kernel

\begin{displaymath}
w_E ({\bf r},r) = {{\cos \theta} \over {v ({\bf r})}} \sqrt{{v(r)} \over {v({\bf r})}} {1 \over {\sqrt{J({\bf r},r)}}}\end{displaymath}

and if the kernel of the operator ${\bf P}_w^{(-)} (v)$ is

\begin{displaymath}
w ({\bf r},r) = w_E ({\bf r},r) \cdot \Psi ({\bf r},r),\end{displaymath}

then as a result of applying the operator ${\bf P}_w^{(-)} (v)$ we receive the amplitude  
 \begin{displaymath}
A ({\bf r}) = A_E ({\bf r}) \cdot \Psi ({\bf r},r^{*}),\end{displaymath} (117)
(note that the star means that r* belongs to the same ray of eiconal $\tau^{(-)}$ as r).

But the operator ${\bf P}_E^{(-)} (v)$ acts inversely (in the sense of q-equivalence). This means that at the point ${\bf r}$ on the reflector,

\begin{displaymath}
A_E ({\bf r}) = {{c \cdot R} \over {\sqrt{J(s,{\bf r}^{(-)})}}} \sqrt{{v(s)} \over {v({\bf r})}}\end{displaymath}

where ${\bf r}^{(-)}$ means the point ${\bf r}$ before the reflection.

According to equation (117),

\begin{displaymath}
A ({\bf r}) = {{c \cdot R} \over {\sqrt{J(s,{\bf r}^{(-)})}}} \sqrt{{v(s)} \over {v({\bf r})}} \Psi ({\bf r},r^{*}).\end{displaymath}

Now we apply the condition

\begin{displaymath}
A ({\bf r}) = c \cdot R\end{displaymath}

and receive

\begin{displaymath}
\Psi ({\bf r},r^{*}) = \sqrt{ { {v({\bf r})} \over {v(s)}} J (s,{\bf r})}.\end{displaymath}

So the kernel we are looking for is

\begin{displaymath}
w_{tr} ({\bf r},r) = {{\cos \theta} \over {v({\bf r})}} \sqrt{ { {v(r)} \over {v(s)}} {{J (s,{\bf r})} \over {J ({\bf r},r)}}}\end{displaymath}

or in homogeneous media[*]

\begin{displaymath}
w_{tr} ({\bf r},r) = {{\cos \theta} \over {v}} \sqrt{ { {{(s...
 ...-x)}^2 + z^2}} } = {{\cos \theta} \over v} {\rho_0 \over \rho}.\end{displaymath}

For land surveys, in the general case we have

\begin{displaymath}
\stackrel{\sim}{w}_{tr} = {1 \over {v({\bf r})}} \sqrt{ { {v(r)} \over {v(s)}} {{J (s,{\bf r})} \over {J ({\bf r},r)}}}\end{displaymath}

and in homogeneous media

\begin{displaymath}
\stackrel{\sim}{w}_{tr} = \sqrt{ { {{(s-x)}^2 + z^2} \over {{(r-x)}^2 + z^2}} } = {\rho_0 \over \rho}.\end{displaymath}


next up previous print clean
Next: Zero-offset migration Up: 11: TRUE AMPLITUDE MIGRATION Previous: 11: TRUE AMPLITUDE MIGRATION
Stanford Exploration Project
1/13/1998