next up previous [pdf]

Next: APPENDIX C Up: Modeling, migration, and inversion Previous: APPENDIX A

APPENDIX B

This appendix derives the objective function in the encoded receiver domain. We start with the objective function in the source and receiver domain as follows:

$\displaystyle J(m({\bf x})) = \frac{1}{2}\sum_{\omega}\sum_{{\bf x}_s}\sum_{{\b...
...(d({\bf x}_r,{\bf x}_s,\omega)-d_{\rm obs}({\bf x}_r,{\bf x}_s,\omega))\vert^2.$     (B-1)

Similar to the discussion in Appendix A, the general form of the inverse transform of receiver phase encoding can be written as follows:
$\displaystyle w({\bf x}_r,{\bf x}_s)d({\bf x}_r,{\bf x}_s,\omega) = \vert c\ver...
...sum_{{\bf p}_r}d({\bf p}_r,{\bf x}_s,\omega)\beta'({\bf x}_r,{\bf p}_r,\omega),$     (B-2)

where for plane-wave phase encoding, $ c=\omega$ and $ \beta({\bf x}_r,{\bf p}_r,\omega)=e^{i\omega{\bf p}_r{\bf x}_r}$; for random phase encoding, $ c=1$ and $ \beta({\bf x}_r,{\bf p}_r,\omega) = e^{i\gamma({\bf x}_r,{\bf p}_r,\omega)}$. Substituting Equation B-2 into B-1 yields:
$\displaystyle J(m({\bf x}))$ $\displaystyle =$ $\displaystyle \frac{1}{2}\sum_{\omega}\sum_{{\bf x}_s}\sum_{{\bf x}_r}\vert c\v...
..._r}r({\bf p}_r,{\bf x}_s,\omega)\beta'({\bf x}_r,{\bf p}_r,\omega)\right\vert^2$  
  $\displaystyle =$ $\displaystyle \frac{1}{2}\sum_{\omega}\sum_{{\bf x}_s}\sum_{{\bf x}_r}\vert c\v...
...r({\bf p}_r,{\bf x}_s ,\omega)\beta'({\bf x}_r,{\bf p}_r,\omega)\right)' \times$  
    $\displaystyle \left( \sum_{{\bf p}'_r}r({\bf p}'_r,{\bf x}_s,\omega)\beta'({\bf x}_r,{\bf p}'_r,\omega)\right)$  
  $\displaystyle =$ $\displaystyle \frac{1}{2}\sum_{\omega} \sum_{{\bf x}_s}\vert c\vert^4
\sum_{{\b...
...bf p}'_r} r'({\bf p}_r,{\bf x}_s ,\omega) r({\bf p}'_r,{\bf x}_s,\omega) \times$  
    $\displaystyle \sum_{{\bf x}_r} \beta({\bf x}_r,{\bf p}_r,\omega)\beta'({\bf x}_r,{\bf p}'_r,\omega),$ (B-3)

where $ r({\bf p}_r,{\bf x}_s,\omega)$ is defined to be the residual in the encoded receiver domain:
$\displaystyle r({\bf p}_r,{\bf x}_s,\omega) = d({\bf p}_r,{\bf x}_s,\omega)-d_{\rm obs}({\bf p}_r,{\bf x}_s,\omega).$     (B-4)

Similar to the discussion in Appendix A, the inner-most summation in Equation B-3 is approximately a Dirac delta function under certain conditions. Therefore, the data-misfit function in the encoded receiver domain reads as follows:
$\displaystyle J(m({\bf x})) \approx \frac{1}{2}\sum_{\omega} \vert c\vert^2 \su...
...t d({\bf p}_r,{\bf x}_s,\omega)-d_{\rm obs}({\bf p}_r,{\bf x}_s,\omega)\vert^2.$     (B-5)


next up previous [pdf]

Next: APPENDIX C Up: Modeling, migration, and inversion Previous: APPENDIX A

2009-04-13