next up previous [pdf]

Next: About this document ... Up: Modeling, migration, and inversion Previous: APPENDIX B

APPENDIX C

This appendix derives the objective function in the simultaneously encoded source and receiver domain. We start with the objective function in the source and receiver domain as follows:

$\displaystyle J(m({\bf x})) = \frac{1}{2}\sum_{\omega}\sum_{{\bf x}_s}\sum_{{\b...
...(d({\bf x}_r,{\bf x}_s,\omega)-d_{\rm obs}({\bf x}_r,{\bf x}_s,\omega))\vert^2.$     (C-1)

If we follow a discussion similar to those in Appendices A and B, we obtain the general expression of the inverse transform of the simultaneous encoding:

$\displaystyle w({\bf x}_r,{\bf x}_s,\omega)d({\bf x}_r,{\bf x}_s,\omega) =
\ver...
...\omega) \alpha'({\bf x}_s,{\bf p}_s,\omega) \beta'({\bf x}_r,{\bf p}_r,\omega).$     (C-2)

Substituting Equation C-2 into C-1 yields:
$\displaystyle J(m({\bf x}))$ $\displaystyle =$ $\displaystyle \frac{1}{2}\sum_{\omega}\sum_{{\bf x}_s}\sum_{{\bf x}_r}\vert c\v...
...pha'({\bf x}_s,{\bf p}_s,\omega)\beta'({\bf x}_r,{\bf p}_r,\omega)\right\vert^2$  
  $\displaystyle =$ $\displaystyle \frac{1}{2}\sum_{\omega}\sum_{{\bf x}_s}\sum_{{\bf x}_r}\vert c\v...
...ha'({\bf x}_s,{\bf p}_s,\omega)\beta'({\bf x}_r,{\bf p}_r,\omega)\right)'\times$  
    $\displaystyle \left( \sum_{{\bf p}'_s}\sum_{{\bf p}'_r}r({\bf p}'_r,{\bf p}'_s,...
...)\alpha'({\bf x}_s,{\bf p}'_s,\omega)\beta'({\bf x}_r,{\bf p}'_r,\omega)\right)$  
  $\displaystyle =$ $\displaystyle \frac{1}{2}\sum_{\omega} \vert c\vert^8
\sum_{{\bf p}_s} \sum_{{\...
...bf p}'_r} r'({\bf p}_r,{\bf p}_s ,\omega)r({\bf p}'_r,{\bf p}'_s,\omega) \times$  
    $\displaystyle \sum_{{\bf x}_s} \sum_{{\bf x}_r} \alpha({\bf x}_s,{\bf p}_s,\ome...
...omega) \alpha'({\bf x}_s,{\bf p}'_s,\omega)\beta'({\bf x}_r,{\bf p}'_r,\omega),$ (C-3)

where $ r({\bf p}_r,{\bf p}_s,\omega)$ is defined to be the residual in the encoded source and receiver domain:
$\displaystyle r({\bf p}_r,{\bf p}_s,\omega) = d({\bf p}_r,{\bf p}_s,\omega)-d_{\rm obs}({\bf p}_r,{\bf p}_s,\omega).$     (C-4)

For plane-wave phase encoding, with sampling dense enough in $ {\bf x}_s$ and $ {\bf x}_r$, the inner-most summations become Dirac delta functions:

    $\displaystyle \sum_{{\bf x}_s} \sum_{{\bf x}_r}
\alpha({\bf x}_s,{\bf p}_s,\ome...
...\omega)
\alpha'({\bf x}_s,{\bf p}'_s,\omega)\beta'({\bf x}_r,{\bf p}'_r,\omega)$  
    $\displaystyle \approx \frac{1}{\vert\omega\vert^4}\delta({{{\bf p}'_r-{\bf p}_r}}) \delta({{{\bf p}'_s-{\bf p}_s}}).$ (C-5)

For random phase encoding, we can also approximately have
    $\displaystyle \sum_{{\bf x}_s} \sum_{{\bf x}_r}
\alpha({\bf x}_s,{\bf p}_s,\ome...
...\omega)
\alpha'({\bf x}_s,{\bf p}'_s,\omega)\beta'({\bf x}_r,{\bf p}'_r,\omega)$  
    $\displaystyle \approx \delta({{{\bf p}'_r-{\bf p}_r}}) \delta({{{\bf p}'_s-{\bf p}_s}}).$ (C-6)

Therefore the data-misfit function in the encoded source and receiver domain is
$\displaystyle J(m({\bf x})) \approx \frac{1}{2}\sum_{\omega} \vert c\vert^4 \su...
...t d({\bf p}_r,{\bf p}_s,\omega)-d_{\rm obs}({\bf p}_r,{\bf p}_s,\omega)\vert^2.$     (C-7)


next up previous [pdf]

Next: About this document ... Up: Modeling, migration, and inversion Previous: APPENDIX B

2009-04-13