next up previous print clean
Next: Oblate Spheroidal Coordinates Up: Appendix A - 3D Previous: Appendix A - 3D

Elliptic Cylindrical Coordinates

The analytic transformation between the elliptic cylindrical and Cartesian coordinate systems (see example in figure [*]). A elliptical coordinate system is specified by,  
 \begin{displaymath}
 \left[\begin{array}
{c}
 x_1\\  x_2\\  x_3
 \end{array}\rig...
 ...\,\rm{sinh} \, \xi_3 \, \rm{sin}\,\xi_1 \\  \end{array}\right],\end{displaymath} (8)
where [x1,x2,x3] are the underlying Cartesian coordinate variables, $[\xi_1,\xi_2,\xi_3]$ the RWE elliptic cylindrical coordinates, and parameter a a stretch parameter controlling the breadth of the coordinate system.

 
ECC
ECC
Figure 6
Four sample extrapolation steps of an elliptic cylindrical coordinate system.
view

The metric tensor describing the geometry of the elliptic coordinate system is given by,  
 \begin{displaymath}
\left[g_{ij}\right] =
\left[\begin{array}
{ccc}
 A^2 & 0 & 0\\  0 & 1 & 0 \\  0 & 0 & A^2 \\ \end{array}\right],\end{displaymath} (9)
where $A=a \sqrt{ {\rm sinh}^2 \,\xi_3 + {\rm sin}^2 \,\xi_1 }$. The determinant of the metric tensor is: $\left\vert \mathbf{g} \right\vert= A^4$. The associated (inverse) metric tensor is given by,  
 \begin{displaymath}
\left[g^{ij}\right] =
\left[\begin{array}
{ccc}
 A^{-2} & 0 & 0 \\  0 & 1 & 0 \\  0 & 0 & A^{-2} \\ \end{array}\right],\end{displaymath} (10)
and weighted metric tensor ($m^{ij}=\sqrt{\left\vert \mathbf{g} \right\vert}\, g^{ij}$) is given by,  
 \begin{displaymath}
\left[m^{ij}\right]
=
\left[\begin{array}
{ccc}
 1 & 0 & 0 \\  0 & A^2 & 0 \\  0 & 0 & 1 \\ \end{array}\right].\end{displaymath} (11)
The corresponding extrapolation wavenumber is generated by using tensors gij and mij in the general wavenumber expression for 3D non-orthogonal coordinate system Shragge (2006). Note that even though the elliptic coordinate system varies spatially, the local curvature parameters remain constant: n1=n2=n3=0. Thus, inserting the values of gij, mij and nj leads to the following extrapolation wavenumber for stepping outward in concentric ellipses $k_{\xi_3}$,  
 \begin{displaymath}
k_\xi_3= \pm \sqrt{ A^2 s^2 \omega^2 - k_\xi_1^2 - A k_\xi_2^2 }.\end{displaymath} (12)
The wavenumber for 2D extrapolation in elliptic coordinates reduces to  
 \begin{displaymath}
\left. k_\xi_3\right\vert _{k_\xi_2=0} = \pm \sqrt{ A^2 s^2 \omega^2 - k_\xi_1^2 }.\end{displaymath} (13)
Note that equation A-5 does not contain a kinematic approximation of the extrapolation wavenumber.


next up previous print clean
Next: Oblate Spheroidal Coordinates Up: Appendix A - 3D Previous: Appendix A - 3D
Stanford Exploration Project
5/6/2007