next up previous print clean
Next: About this document ... Up: Appendix A - 3D Previous: Elliptic Cylindrical Coordinates

Oblate Spheroidal Coordinates

The analytic transformation between the oblate spheroidal and Cartesian coordinate systems (see example in figure [*]). A elliptical coordinate system is specified by,  
 \begin{displaymath}
 \left[\begin{array}
{c}
 x_1\\  x_2\\  x_3
 \end{array}\rig...
 ...\,\rm{sinh} \, \xi_3 \, \rm{sin}\,\xi_1 \\  \end{array}\right].\end{displaymath} (14)
where, again, a is a stretch parameter controlling the breadth of the coordinate system.

 
OSC
OSC
Figure 7
Three sample extrapolation steps of an oblate spheroidal coordinate system.
view

The metric tensor gij describing the geometry of oblate spheroidal coordinates is given by,  
 \begin{displaymath}
\left[g_{ij}\right] =
\left[\begin{array}
{ccc}
 A^2 & 0 & 0 \\  0 & B^2 & 0 \\  0 & 0 & A^2 \\ \end{array}\right],\end{displaymath} (15)
where $A=a \sqrt{ {\rm sinh}^2 \,\xi_3 + {\rm sin}^2 \,\xi_1 }$ and $B=a {\rm cosh}\,\xi_3 \, {\rm cos} \, \xi_1$. The determinant of the metric tensor is: $\left\vert \mathbf{g} \right\vert= A^4\,B^2$. The associated (inverse) metric tensor is given by,  
 \begin{displaymath}
\left[g^{ij}\right] =
\left[\begin{array}
{ccc}
 A^{-2} & 0 & 0 \\  0 & B^{-2} & 0 \\  0 & 0 & A^{-2} \\ \end{array}\right].\end{displaymath} (16)
and weighted metric tensor is given by,  
 \begin{displaymath}
\left[m^{ij}\right]
=
\left[\begin{array}
{ccc}
 B & 0 & 0 \\  0 & \frac{A^2}{B} & 0 \\  0 & 0 & B \\ \end{array}\right].\end{displaymath} (17)
The corresponding extrapolation wavenumber is generated by inputting tensors gij and mij into the generalized wavenumber expression for 3D non-orthogonal coordinate systems Shragge (2006). Unlike in elliptic cylindrical coordinates, though, the oblate spheroidal system has non-stationary ni coefficients: $n^1= a {\rm cosh}\, \xi_3 \,{\rm
sin}\, \xi_1 $, n2=0 and $n^3= a {\rm sinh}\, \xi$. The resulting extrapolation wavenumber is  
 \begin{displaymath}
k_\xi_3= \frac{ {\rm i tanh} \,\xi_3}{2} \pm 
\sqrt{ 
 A^2 s...
 ...^2 + {\rm i} k_\xi_1{\rm tan}\,\xi_1 - {\rm tanh}^2\, \xi_3 
}.\end{displaymath} (18)
The wavenumber for 2D extrapolation in elliptic coordinates reduces to  
 \begin{displaymath}
\left. k_\xi_3\right\vert _{k_\xi_2=0} = \pm \sqrt{ A^2 s^2 \omega^2 - k_\xi_1^2 }.\end{displaymath} (19)

 


next up previous print clean
Next: About this document ... Up: Appendix A - 3D Previous: Elliptic Cylindrical Coordinates
Stanford Exploration Project
5/6/2007