next up previous print clean
Next: Example 2 - Polar Up: Shragge: GRWE Previous: Split-Step Fourier Approximation

Example 1 - 2-D Sheared Cartesian Coordinates

An instructive example is a coordinate system formed by a shearing action on a Cartesian mesh (see figure [*]). A sheared Cartesian coordinate system is defined by,  
 \begin{displaymath}
 \left[\begin{array}
{c}
 x_1\  x_2\  x_3
 \end{array}\rig...
 ...egin{array}
{c}
 \xi_1\  \xi_2\  \xi_3\  \end{array}\right],\end{displaymath} (21)
where $\theta$ is the shear angle of the coordinate system ($\theta=90^{\circ}$ is Cartesian).

 
2Dexamp
Figure 1
2-D sheared Cartesian coordinates. Left panel: Physical domain represented by sheared Cartesian coordinates defined by $\{x_1,x_3\}$; Right panel: GRWE domain chosen to be the unit square $\{ \xi_1,\xi_2 \}$.
2Dexamp
view

This system reduces to a more workable set of two equations,  
 \begin{displaymath}
 \left[\begin{array}
{c}
 x_1\  x_3
 \end{array}\right] 
 =...
 ... \left[\begin{array}
{c}
 \xi_1\  \xi_3\  \end{array}\right],\end{displaymath} (22)
that has a metric tensor gij given by,  
 \begin{displaymath}
\left[g_{ij}\right]
=
\left[\begin{array}
{cc}
\frac{\partia...
 ... \rm{cos}\, \theta \  \rm{cos}\,\theta & 1 \end{array}\right],\end{displaymath} (23)
with a determinant $\left\vert \mathbf{g} \right\vert= \rm{sin}^2\,\theta$ and an associated metric tensor gij given by,  
 \begin{displaymath}
\left[g^{ij}\right]
=
\frac{1}{\rm{sin}^2\,\theta}
\left[\be...
 ...- \rm{cos}\,\theta \  -\rm{cos}\,\theta & 1\end{array}\right].\end{displaymath} (24)
Note that because the tensor in equation 24 is coordinate invariant, equation 10 simplifies to,  
 \begin{displaymath}
 \Delta \mathcal{U}= g^{ij} \,\frac{\partial^2 \mathcal{U}}{\partial \xi_i\partial \xi_j}
 = - \omega^2\ss^2\mathcal{U},\end{displaymath} (25)
and generates the following dispersion relation,
\begin{displaymath}
g^{ij}k_\xi_ik_\xi_j= \omega^2\ss^2.\end{displaymath} (26)
Expanding out these terms leads to an expression for wavenumber $k_\xi_3$,  
 \begin{displaymath}
k_\xi_3=
-\frac{ g^{13} }{ g^{33} } k_\xi_1
\pm
\sqrt{\frac{...
 ...33}}-\left(
 \frac{g^{13}}{g^{33}} \right)^2\right)k_\xi_1^2}. \end{displaymath} (27)
Substituting the values of the associated metric tensor in equation 24 into equation 27 yields,
\begin{displaymath}
k_\xi_3=
\rm{cos} \, \theta \;k_\xi_1
\pm \rm{sin} \,\theta
\sqrt{\ss^2\omega^2 - k_\xi_1^2}. \end{displaymath} (28)

A numerical test using a Cartesian coordinate system sheared at 25$^{\circ}$ from vertical is shown in figure [*]. The background velocity model is 1500 ms-1 and the zero-offset data consist of 4 flat plane-waves t=0.2, 0.4, 0.6 and 0.8 s. As expected, the zero-offset migration results image reflectors at depths z=300, 600, 900, and 1200 m. Note that the propagation has created boundary artifacts: those on the left are reflections due to a truncated coordinate system while those on the right are hyperbolic diffractions caused by truncated plane-waves.

 
Rays0
Figure 2
Sheared Cartesian coordinate system test. Coordinate system shear angle and velocity are $\theta=25^{\circ}$ and 1500 ms-1, respectively. Zero-offset data consist of 4 flat plane-wave impulses at t=0.2, 0.4, 0.6 and 0.8 s that are correctly imaged at depths z=300, 600, 900, and 1200 m.
Rays0
view burn build edit restore


next up previous print clean
Next: Example 2 - Polar Up: Shragge: GRWE Previous: Split-Step Fourier Approximation
Stanford Exploration Project
4/5/2006