next up previous print clean
Next: About this document ... Up: Shan and Biondi: 3D Previous: Acknowledgments

REFERENCES

Abramowitz, M., and Stegun, I., 1972, Solutions of quartic equations: New York: Dover., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 17-18.

Baumstein, A., and Anderson, J., 2003, Wavefield extrapolation in laterally varying VTI media: Soc. of Expl. Geophys., 73rd Ann. Internat. Mtg., 945-948.

Blacquiere, G., Debeye, H. W. J., Wapenaar, C. P. A., and Berkhout, A. J., 1989, 3D table-driven migration: Geophys. Prosp., 37, no. 08, 925-958.

Ferguson, R. J., and Margrave, G. F., 1998, Depth migration in TI media by nonstationary phase shift: Soc. of Expl. Geophys., 68th Ann. Internat. Mtg, 1831-1834.

Hale, D., 1991a, 3-D depth migration via McClellan transformations: Geophysics, 56, no. 11, 1778-1785.

Hale, D., 1991b, Stable explicit depth extrapolation of seismic wavefields: Geophysics, 56, no. 11, 1770-1777.

Holberg, O., 1988, Towards optimum one-way wave propagation: Geophys. Prosp., 36, no. 02, 99-114.

McClellan, J., and Chan, D., 1977, A 2-D FIR filter structure derived from the Chebychev recursion: IEEE Trans. Circuits Syst.,, CAS-24, 372-378.

McClellan, J. H., and Parks, T. W., 1972, Equiripple approximation of fan filters: Geophysics, 37, no. 04, 573-583.

Ristow, D., and Ruhl, T., 1997, Migration in transversely isotropic media using implicit operators: Soc. of Expl. Geophys., 67th Ann. Internat. Mtg, 1699-1702.

Rousseau, J. H. L., 1997, Depth migration in heterogeneous, transversely isotropic media with the phase-shift-plus-interpolation method: Soc. of Expl. Geophys., 67th Ann. Internat. Mtg, 1703-1706.

Shan, G., and Biondi, B., 2004a, Imaging overturned waves by plane-wave migration in tilted coordinates: 74th Ann. Internat. Mtg., Soc. of Expl. Geophys., Expanded Abstracts, 969-972.

Shan, G., and Biondi, B., 2004b, Wavefield extrapolation in laterally-varying tilted TI media: SEP-117, 1-10.

Shan, G., and Biondi, B., 2005, Imaging steeply dipping reflectors in TI media by wavefield extrapolation: SEP-120, 63-76.

Thomsen, L., 1986, Weak elastic anisotropy: Geophysics, 51, no. 10, 1954-1966.

Thorbecke, J., 1997, Common focus point technology: Delft University of Technology., Ph.D. thesis.

Tsvankin, I., 1996, P-wave signatures and notation for transversely isotropic media: An overview: Geophysics, 61, no. 02, 467-483.

Uzcategui, O., 1995, 2-D depth migration in transversely isotropic media using explicit operators: Geophysics, 60, no. 06, 1819-1829.

Zhang, J., Verschuur, D. J., and Wapenaar, C. P. A., 2001a, Depth migration of shot records in heterogeneous, tranversely isotropic media using optimum explicit operators: Geophys. Prosp., 49, no. 03, 287-299.

Zhang, J., Wapenaar, C., and Verschuur, D., 2001b, 3-D depth migration in VTI media with explicit extrapolation operators: Soc. of Expl. Geophys., 71st Ann. Internat. Mtg, 1085-1088.

A This appendix discusses how to estimate the coefficients aeenxny, aoenxny, aeonxny and aoonxny in equations (17)-(20).

We begin with equation (17), as the other three equations are silimiar. Let $\Delta k_x$ and $\Delta k_y$ be the sampling of the wavenumbers kx and ky, respectively. To mimic the behavior of the orginal operator Fee, we need to estimate aeenxny, so that

\begin{displaymath}
F^{ee}(k_x,k_y)\approx \sum_{n_x,n_y}a^{ee}_{n_xn_y}\cos(n_x\Delta xk_x)\cos(n_y\Delta yk_y),\end{displaymath}

for $k_x\in [0,k_x^{{Nyquist}}]$ and $k_y\in [0,k_y^{{Nyquist}}]$, where kxNyquist is the Nyquist wavenumber $\frac{\pi}{\Delta x}$ and kxNyquist is the Nyquist wavenumber $\frac{\pi}{\Delta y}$. Let Mx be $k_x^{{Nyquist}}/\Delta k_x$ and My be $ k_y^{{Nyquist}}/\Delta k_y$. The coefficients can be estimated by the following fitting goals:  
 \begin{displaymath}
{\bf W}({\bf A^{ee}a^{ee}}-{\bf f^{ee}}) \approx {\bf 0},\end{displaymath} (30)
where

\begin{displaymath}
{\bf a^{ee}}=\left(a^{ee}_{00},a^{ee}_{10},\cdots,a^{ee}_{n_...
 ...x,n_y}
 ,a^{ee}_{n_x+1,n_y},\cdots, a^{ee}_{N_x,N_y}\right )^T.\end{displaymath}

${\bf A^{ee}}$ is a matrix with the elements

\begin{displaymath}
A^{ee}_{mn}=\cos(m_xn_x\Delta k_x \Delta x)\cos(m_yn_y\Delta k_y \Delta y),\end{displaymath}

where m=my(Mx+1)+mx and n=ny(Nx+1)+nx. ${\bf f^{ee}}$ is a vector as follows

\begin{displaymath}
{\bf f^{ee}}=\left( f^{ee}_{00},f^{ee}_{10},\cdots,f^{ee}_{m...
 ...x,m_y}
 ,f^{ee}_{m_x+1,m_y},\cdots, f^{ee}_{M_x,M_y} \right)^T,\end{displaymath}

where $f^{ee}_{m_x,m_y}=F^{ee}(m_x\Delta k_x,m_y\Delta k_y)$.${\bf W}$ is a diagonal matrix with the weights for the wavenumbers kx,ky. High weights are assigned to the wavenumbers of interest. The wavenumbers, such as the evacent energy, are not of interest and are assigned low weights. Given the same weight matrix ${\bf W}$, the matrix ${\bf WA^{ee}}$ are same though fee changes with the function Fee(kx,ky). Therefore, QR decomposition is a good way to solve the fitting goal (30). First, we run QR decomposition on matrix ${\bf{WA}}$: ${\bf WA=QR}$, where ${\bf Q}$ is an orthogonal matrix and ${\bf R}$ is an upper triangular matrix. We write down the matrixes ${\bf Q}$ and ${\bf R}$. Given the function Fee(kx,ky), we caluculate ${\bf f^{ee}}$. The solution of fitting goal (30) ${\bf a^{ee}}$ is given by
\begin{displaymath}
{\bf a^{ee}}={\bf R}^{-1}{\bf Q}^T{\bf Wf^{ee}}.\end{displaymath} (31)
For equation (18), we have the following fitting goal:  
 \begin{displaymath}
{\bf W}({\bf A^{oe}a^{oe}}-{\bf f^{oe}}) \approx {\bf 0},\end{displaymath} (32)
where

\begin{displaymath}
{\bf a^{oe}}=\left(a^{oe}_{00},a^{oe}_{10},\cdots,a^{oe}_{n_...
 ...x,n_y}
 ,a^{oe}_{n_x+1,n_y},\cdots, a^{oe}_{N_x,N_y}\right )^T,\end{displaymath}

and ${\bf f^{oe}}$ in equation (32) is

\begin{displaymath}
{\bf f^{oe}}=\left( f^{oe}_{00},f^{oe}_{10},\cdots,f^{oe}_{m...
 ...x,m_y}
 ,f^{oe}_{m_x+1,m_y},\cdots, f^{oe}_{M_x,M_y} \right)^T,\end{displaymath}

where $f^{oe}_{m_x,m_y}=F^{oe}(m_x\Delta k_x,m_y\Delta k_y)$. ${\bf A^{oe}}$ in equation (32) is a matrix with the elements

\begin{displaymath}
A^{oe}_{mn}=\sin(m_xn_x\Delta k_x \Delta x)\cos(m_yn_y\Delta k_y \Delta y),\end{displaymath}

where m=my(Mx+1)+mx and n=ny(Nx+1)+nx. For equation (19), we have the following fitting goal:  
 \begin{displaymath}
{\bf W}({\bf A^{eo}a^{eo}}-{\bf f^{eo}}) \approx {\bf 0},\end{displaymath} (33)
where

\begin{displaymath}
{\bf a^{eo}}=\left(a^{eo}_{00},a^{eo}_{10},\cdots,a^{eo}_{n_...
 ...x,n_y}
 ,a^{eo}_{n_x+1,n_y},\cdots, a^{eo}_{N_x,N_y}\right )^T,\end{displaymath}

and ${\bf f^{eo}}$ in equation (32) is

\begin{displaymath}
{\bf f^{eo}}=\left( f^{eo}_{00},f^{eo}_{10},\cdots,f^{eo}_{m...
 ...x,m_y}
 ,f^{eo}_{m_x+1,m_y},\cdots, f^{eo}_{M_x,M_y} \right)^T,\end{displaymath}

where $f^{eo}_{m_x,m_y}=F^{eo}(m_x\Delta k_x,m_y\Delta k_y)$. ${\bf A^{eo}}$ in equation (33) is a matrix with the elements

\begin{displaymath}
A^{eo}_{mn}=\cos(m_xn_x\Delta k_x \Delta x)\sin(m_yn_y\Delta k_y \Delta y),\end{displaymath}

where m=my(Mx+1)+mx and n=ny(Nx+1)+nx. For equation (20), we have the following fitting goal:  
 \begin{displaymath}
{\bf W}({\bf A^{oo}a^{oo}}-{\bf f^{oo}}) \approx {\bf 0},\end{displaymath} (34)
where

\begin{displaymath}
{\bf a^{oo}}=\left(a^{oo}_{00},a^{oo}_{10},\cdots,a^{oo}_{n_...
 ...x,n_y}
 ,a^{oo}_{n_x+1,n_y},\cdots, a^{oo}_{N_x,N_y}\right )^T,\end{displaymath}

and ${\bf f^{oo}}$ in equation (32) is

\begin{displaymath}
{\bf f^{oo}}=\left( f^{oo}_{00},f^{oo}_{10},\cdots,f^{oo}_{m...
 ...x,m_y}
 ,f^{oo}_{m_x+1,m_y},\cdots, f^{oo}_{M_x,M_y} \right)^T,\end{displaymath}

where $f^{oo}_{m_x,m_y}=F^{oo}(m_x\Delta k_x,m_y\Delta k_y)$. ${\bf A^{oo}}$ in equation (34) is a matrix with the elements

\begin{displaymath}
A^{oo}_{mn}=\sin(m_xn_x\Delta k_x \Delta x)\sin(m_yn_y\Delta k_y \Delta y),\end{displaymath}

where m=my(Mx+1)+mx and n=ny(Nx+1)+nx. Fitting goals (32), (33), and (34) can be solved in the same way as equation (30). The solution of fitting goal (32), (33), (34) are given by
\begin{eqnarray}
{\bf a^{oe}}&=&({\bf R^{oe}})^{-1}({\bf Q^{oe}})^T{\bf Wf^{oe}}...
 ...  {\bf a^{oo}}&=&({\bf R^{oo}})^{-1}({\bf Q^{oo}})^T{\bf Wf^{oo}},\end{eqnarray} (35)
(36)
(37)
where ${\bf Q^{oe}}$, ${\bf R^{oe}}$, ${\bf Q^{eo}}$, ${\bf R^{eo}}$ and ${\bf Q^{oo}}$, ${\bf R^{oo}}$ are the QR decomposition result of the matrixs ${\bf WA^{oe}}$, ${\bf WA^{eo}}$ and ${\bf WA^{oo}}$, respectively. B In this appendix, we derive the inverse Fourier transform of the correction operator F(kx,ky).

It is well known that the inverse Fourier transform of the function $\cos{n_x\Delta xk_x}$, $\sin{n_x\Delta xk_x}$, $\cos{n_y\Delta yk_y}$, $\sin{n_y\Delta yk_y}$ are:
\begin{eqnarray}
{\mathcal{F}}^{-1}\{\cos(n_x\Delta x k_x)\}&=&\frac{1}{2}(\delt...
 ...) \}&=&
\frac{1}{2i}(\delta(y-n_y\Delta y)-\delta(y+n_y\Delta y)).\end{eqnarray} (38)
(39)
(40)
(41)
Let $\delta_{\pm n_x}=\delta(x\pm n_x\Delta x)$, $\delta_{\pm n_y}=\delta(y \pm n_y\Delta y)$ and $\delta_{\pm n_x,\pm n_y}=\delta({x\pm n_x\Delta x,y\pm n_y\Delta y})$.The inverse Fourier transform of the function $\cos({n_x\Delta xk_x})\cos({n_y\Delta yk_y})$ is :
\begin{eqnarray}
{\mathcal{F}}^{-1}\{\cos{(n_x\Delta xk_x)}\cos(n_y\Delta y k_y)...
 ..._{-n_x,+n_y}+\delta_{+n_x,-n_y}+\delta_{+n_x,+n_y}).\ \ \ \ \ \ \ \end{eqnarray} (42)
(43)
Similarly, the inverse Fourier transform of the functions $\cos({n_x\Delta xk_x})\sin({n_y\Delta yk_y})$,
$\sin({n_x\Delta xk_x})\cos({n_y\Delta yk_y})$ and $\sin({n_x\Delta xk_x})\sin({n_y\Delta yk_y})$ are :
\begin{eqnarray}
{\mathcal{F}}^{-1}\{\cos{(n_x\Delta xk_x)}\sin(n_y\Delta y k_y)...
 ...n_y}-\delta_{+n_x,-n_y}+\delta_{+n_x,+n_y}).\ \ \ \ \ \ \ \ \ \ \ \end{eqnarray} (44)
(45)
(46)
Therefore the inverse Fourier transform of the functions Fee(kx,ky), Foe(kx,ky), Feo(kx,ky) and Foo(kx,ky) are:
\begin{eqnarray}
{\mathcal{F}}^{-1}\{ F^{ee}(k_x,k_y)\}&=&\sum_{n_x,n_y}\frac{1}...
 ...x,+n_y}-\delta_{+n_x,-n_y}+\delta_{+n_x,+n_y}). \ \ \ \ \ \ \ \ \ \end{eqnarray} (47)
(48)
(49)
(50)
The correction operator F(kx,ky) is the sum of Fee(kx,ky), Foe(kx,ky), Feo(kx,ky) and Foo(kx,ky). Therefore the inverse Fourier transform of the correction operator is:
\begin{eqnarray}
{\mathcal{F}}^{-1}\{ F(k_x,k_y)\}&=&{\mathcal{F}}^{-1}\{ F^{ee}...
 ...-n_y}
+\delta_{+n_x,+n_y} c_{+n_x,+n_y})\ \ \ \ \ \ \ \ \ \ \ \ \ \end{eqnarray} (51)
(52)
where
\begin{eqnarray}
c_{-n_x,-n_y}&=&[(a^{ee}_{n_x,n_y}-a^{oo}_{n_x,n_y})-i(a^{eo}_{...
 ...{n_x,n_y}-a^{oo}_{n_x,n_y})+i(a^{eo}_{n_x,n_y}+a^{oe}_{n_x,n_y})].\end{eqnarray} (53)
(54)
(55)
(56)

 


next up previous print clean
Next: About this document ... Up: Shan and Biondi: 3D Previous: Acknowledgments
Stanford Exploration Project
5/3/2005