next up previous print clean
Next: Image transformation Up: Theory of wave-equation MVA Previous: Imaging by wavefield extrapolation

Wavefield perturbations

A perturbation of the wavefield at some depth level can be derived from the background wavefield by a simple application of the chain rule to Equation (1):
\begin{displaymath}
\delta \u_{z+\Delta z}= {\bf E}_z\left[\delta \u_{z } \right] + \delta {\bf E}_z \left[\u_{z } \right].\end{displaymath} (5)
This is also a recursive equation which can be written in matrix form as
\begin{eqnarray}
\left(\matrix {
 {{\bf 1}} & {\bf 0}& {\bf 0}&\cdots& {\bf 0}& ...
 ...x{
\u_0\cr \u_1\cr \u_2\cr\vdots\cr \u_n \cr
} \right),
\nonumber \end{eqnarray}
or in a more compact notation as:
\begin{displaymath}
\left({\bf 1}- {\bf E}\right)\delta \u= \delta {\bf E}\u,\end{displaymath} (6)
where the operator $\delta {\bf E}$ stands for a perturbation of the extrapolation operator ${\bf E}$.

Biondi and Sava (1999) show that, at every depth level, we can write the operator $\delta {\bf E}$ as a chain of the extrapolation operator ${\bf E}$ and a scattering operator ${\bf S}$applied to the slowness perturbation $\delta s_z$:
\begin{displaymath}
\delta {\bf E}_z \left[\u_{z } \right] = {\bf E}_z\left[{\bf S}_z\left[\delta s_z \right] \right].\end{displaymath} (7)

The expression for the wavefield perturbation $\delta \u$ becomes
\begin{displaymath}
\delta \u_{z+\Delta z}= {\bf E}_z\left[\delta \u_{z } \right] + {\bf E}_z\left[{\bf S}_z\left[\delta s_z \right] \right],\end{displaymath} (8)
which is also a recursive relation that can be written in matrix form as
\begin{eqnarray}
\left(\matrix {
 {{\bf 1}} & {\bf 0}& {\bf 0}&\cdots& {\bf 0}& ...
 ...s_1\cr \delta s_2\cr\vdots\cr \delta s_n \cr
} \right),
\nonumber \end{eqnarray}
or in a more compact notation as:
\begin{displaymath}
\left({\bf 1}- {\bf E}\right)\delta \u= {\bf E}{\bf S}\delta s.\end{displaymath} (9)
The vector $\delta s$ stands for the slowness perturbation.

If we introduce the notation
\begin{displaymath}
{\bf G}= \left({\bf 1}- {\bf E}\right)^{-1} {\bf E}{\bf S},\end{displaymath} (10)
we obtain a relation between a slowness perturbation and the corresponding wavefield perturbation:  
 \begin{displaymath}
\delta \u= {\bf G}\delta s.\end{displaymath} (11)


next up previous print clean
Next: Image transformation Up: Theory of wave-equation MVA Previous: Imaging by wavefield extrapolation
Stanford Exploration Project
11/11/2002