next up previous print clean
Next: Inversion of the Hessian Up: Appendix Previous: Appendix

Inversion of a 2$\times$2 block matrix

Let us define the $2\times2$ block matrix M as follows:
\begin{displaymath}
{\bf M}=
\left( \begin{array}
{cc} 
 {\bf A} & {\bf B} \\  {\bf C} & {\bf D}\end{array}\right),\end{displaymath} (18)
where A, B, C, and D are matrices. First, we consider the matrix equation
\begin{displaymath}
\left( \begin{array}
{cc} 
 {\bf A} & {\bf B} \\  {\bf C} & ...
 ...eft( \begin{array}
{c} 
 {\bf G} \\  {\bf H}\end{array}\right).\end{displaymath} (19)
If we multiply the top row by $-{\bf CA^{-1}}$ and add it to the bottom, we have
\begin{displaymath}
({\bf D} - {\bf CA^{-1}B}){\bf F} = {\bf H} - {\bf CA^{-1}G}.\end{displaymath} (20)
Then we can easily find F and E. The quantity $({\bf D} -
{\bf CA^{-1}B})$ is called the Schur complement of A and, denoted as ${\bf S_A}$, appears often in linear algebra Demmel (1997). The derivation of F and E can be written in a matrix form
\begin{displaymath}
\left( \begin{array}
{cc} 
 {\bf A} & {\bf B} \\  {\bf C} & ...
 ...\bf I} & {\bf A^{-1}B} \\  {\bf 0} & {\bf I}\end{array}\right),\end{displaymath} (21)
which resembles an LDU decomposition of M. Alternatively, we have the UDL decomposition
\begin{displaymath}
\left( \begin{array}
{cc} 
 {\bf A} & {\bf B} \\  {\bf C} & ...
 ...\bf I} & {\bf 0} \\  {\bf D^{-1}C} & {\bf I}\end{array}\right),\end{displaymath} (22)
where ${\bf S_D}={\bf A}-{\bf BD^{-1}C}$ is the Schur complement of D. The inversion formulas are then easy to derive as follows:
\begin{displaymath}
\left( \begin{array}
{cc} 
 {\bf A} & {\bf B} \\  {\bf C} & ...
 ...\bf I} & {\bf 0} \\  {\bf -CA^{-1}} & {\bf I}\end{array}\right)\end{displaymath} (23)
and
\begin{displaymath}
\left( \begin{array}
{cc} 
 {\bf A} & {\bf B} \\  {\bf C} & ...
 ...bf I} & {\bf -BD^{-1}} \\  {\bf 0} & {\bf I}\end{array}\right).\end{displaymath} (24)
The decomposition of the matrix M offers opportunities for fast inversion algorithms. The final expressions for M are  
 \begin{displaymath}
\left( \begin{array}
{cc} 
 {\bf A} & {\bf B} \\  {\bf C} & ...
 ...} \\  -{\bf S_A^{-1}CA^{-1}} & {\bf S_A^{-1}}\end{array}\right)\end{displaymath} (25)
and  
 \begin{displaymath}
\left( \begin{array}
{cc} 
 {\bf A} & {\bf B} \\  {\bf C} & ...
 ...[{\bf D^{-1}}+{\bf
 D^{-1}CS_D^{-1}BD^{-1}}]\end{array}\right).\end{displaymath} (26)
Equations (25) and (26) yield the matrix inversion lemma
\begin{displaymath}
({\bf A} - {\bf BD^{-1}C})^{-1} =
 {\bf A^{-1}}+{\bf A^{-1}B({\bf D} - {\bf CA^{-1}B})^{-1}CA^{-1}}.\end{displaymath} (27)

next up previous print clean
Next: Inversion of the Hessian Up: Appendix Previous: Appendix
Stanford Exploration Project
4/29/2001