next up previous print clean
Next: About this document ... Up: Appendix Previous: Inversion of a 22

Inversion of the Hessian

Using the preceding results, I can invert for the Hessian in equation (9), either with or without regularization. The fitting goal is
\begin{displaymath}
{\bf 0} \approx {\bf Lm}-{\bf d},\end{displaymath} (28)
with ${\bf L}=({\bf H} \;\; {\bf B})$ and ${\bf m'}=({\bf m_s} \;\; {\bf
m_n})$.The matrix equation we want to solve is
\begin{displaymath}
\left( \begin{array}
{cc} 
 {\bf H'H} & {\bf H'B} \\  {\bf B...
 ... \begin{array}
{c} 
 {\bf H'd} \\  {\bf B'd}\end{array}\right),\end{displaymath} (29)
where ${\bf m_s}$ and ${\bf m_n}$ are the unknowns. For ${\bf m_s}$, I use the bottom row of equation (25). For ${\bf m_n}$, I use the top row of equation (26). We have, then,
\begin{eqnarray}
\hat{{\bf m_s}}&=&({\bf H'H}-{\bf H'B}({\bf B'B})^{-1}{\bf
 B'H...
 ...\bf H'H})^{-1}
 {\bf H'B})^{-1}{\bf B'H}({\bf H'H})^{-1}{\bf H'd},\end{eqnarray} (30)
(31)
which can be simplified as follows:
\begin{eqnarray}
\hat{{\bf m_s}}&=&({\bf H'}({\bf I}-{\bf B}({\bf
 B'B})^{-1}{\b...
 ...B})^{-1}{\bf B'}({\bf I}-{\bf H}({\bf
 H'H})^{-1}{\bf H'}){\bf d}.\end{eqnarray} (32)
(33)
${\bf B}({\bf B'B})^{-1}{\bf B'}$ is the coherent noise resolution matrix, whereas ${\bf H}({\bf H'H})^{-1}{\bf H'}$ is the signal resolution matrix. Denoting $\overline{{\bf R_s}} = {\bf I}-{\bf H}({\bf H'H})^{-1}
{\bf H'}$ and $\overline{{\bf R_n}} = {\bf I}-{\bf B}({\bf B'B})^{-1}
{\bf B'}$ yields the following simplified expression for $\hat{{\bf m_s}}$ and $\hat{{\bf m_n}}$: 
 \begin{displaymath}
\left( \begin{array}
{c} 
 \hat{{\bf m_s}} \\  \hat{{\bf m_n...
 ...ne{R_s}B})^{-1}{\bf B'\overline{R_s}}\end{array}\right){\bf d}.\end{displaymath} (34)

The fitting goal becomes
\begin{eqnarray}
{\bf 0} &\approx& {\bf Lm}-{\bf d}, \\  {\bf 0} &\approx& \epsilon {\bf Cm},\end{eqnarray} (35)
(36)
with ${\bf L}=({\bf H} \;\; {\bf B})$, ${\bf m'}=({\bf m_s} \;\; {\bf
m_n})$ and
\begin{displaymath}
{\bf C}=
\left(\begin{array}
{cc}
 {\bf C_s} & {\bf 0} \\  {\bf 0} & {\bf C_n}
 \end{array}\right).\end{displaymath} (37)
The matrix equation we want to solve is
\begin{displaymath}
\left( \begin{array}
{cc} 
 {\bf H'H} + \epsilon^2 {\bf C'_s...
 ... \begin{array}
{c} 
 {\bf H'd} \\  {\bf B'd}\end{array}\right).\end{displaymath} (38)
Using equations (25) and (26) we obtain  
 \begin{displaymath}
\left( \begin{array}
{c} 
 \hat{{\bf m_s}} \\  \hat{{\bf m_n...
 ... C_n'C_n})^{-1}{\bf B'\overline{R_s}}\end{array}\right){\bf d},\end{displaymath} (39)
where $\overline{{\bf R_s}} = {\bf I}-{\bf H}({\bf H'H})^{-1}
{\bf H'}$ and $\overline{{\bf R_n}} = {\bf I}-{\bf B}({\bf B'B})^{-1}
{\bf B'}$.


next up previous print clean
Next: About this document ... Up: Appendix Previous: Inversion of a 22
Stanford Exploration Project
4/29/2001