next up previous print clean
Next: Solving the Cauchy problem Up: Three-dimensional seismic data regularization Previous: Conclusions

Second-order reflection traveltime derivatives

 In this appendix, I derive equations connecting second-order partial derivatives of the reflection traveltime with the geometric properties of the reflector in a constant velocity medium. These equations are used in the main text of Chapter [*] for the amplitude behavior description. Let $\tau(s,r)$ be the reflection traveltime from the source s to the receiver r. Consider a formal equality  
 \begin{displaymath}
\tau(s,r)=\tau_1\left(s,x(s,r)\right)+\tau_2\left(x(s,r),r\right)\;,\end{displaymath} (266)
where x is the reflection point parameter, $\tau_1$ corresponds to the incident ray, and $\tau_2$ corresponds to the reflected ray. Differentiating ([*]) with respect to s and r yields
      \begin{eqnarray}
{\partial \tau \over \partial s} & = & 
{\partial \tau_1 \over ...
 ...\partial \tau \over \partial x}\,
{\partial x \over \partial r}\;.\end{eqnarray} (267)
(268)
According to Fermat's principle, the two-point reflection ray path must correspond to the traveltime stationary point. Therefore  
 \begin{displaymath}
{\partial \tau \over \partial x} \equiv 0\end{displaymath} (269)
for any s and r. Taking into account ([*]) while differentiating ([*]) and ([*]), we get
         \begin{eqnarray}
{\partial^2 \tau \over \partial s^2} & = & 
{\partial^2 \tau_1 ...
 ...tial x \over \partial r}\;=
B_2\,
{\partial x \over \partial s}\;,\end{eqnarray} (270)
(271)
(272)
where

\begin{displaymath}
B_1={\partial^2 \tau_1 \over \partial s \partial x}\;;\;
B_2={\partial^2 \tau_2 \over \partial r \partial x}\;.\end{displaymath}

Differentiating equation ([*]) gives us the additional pair of equations
      \begin{eqnarray}
C\,{\partial x \over \partial s}+B_1 & = & 0\;,
\\ C\,{\partial x \over \partial r}+B_2 & = & 0\;,\end{eqnarray} (273)
(274)
where

\begin{displaymath}
C={\partial^2 \tau \over \partial x^2}=
{\partial^2 \tau_1 \over \partial x^2}+
{\partial^2 \tau_2 \over \partial x^2}\;.\end{displaymath}

Solving the system ([*]) - ([*]) for $\partial x
\over \partial s$ and $\partial x \over \partial r$ and substituting the result into ([*]) - ([*]) produces the following set of expressions:
         \begin{eqnarray}
{\partial^2 \tau \over \partial s^2} & = & 
{\partial^2 \tau_1 ...
 ...l^2 \tau \over \partial s \partial r} & = & 
- C^{-1}\,B_1\,B_2\;.\end{eqnarray} (275)
(276)
(277)
In the case of a constant velocity medium, expressions ([*]) to ([*]) can be applied directly to the explicit equation for the two-point eikonal  
 \begin{displaymath}
\tau_1(y,x)=\tau_2(x,y)={\sqrt{(x-y)^2+z^2(x)}\over v}\;.\end{displaymath} (278)
Differentiating ([*]) and taking into account the trigonometric relationships for the incident and reflected rays (Figure [*]), one can evaluate all the quantities in ([*]) to ([*]) explicitly. After some heavy algebra, the resultant expressions for the traveltime derivatives take the form
      \begin{eqnarray}
{\partial \tau \over \partial s} = 
{\partial \tau_1 \over \par...
 ...\tau_2 \over \partial x} =
- {\sin{\gamma}\over v \cos{\alpha}}\;;\end{eqnarray} (279)
(280)
      \begin{eqnarray}
B_1 & = & 
{\partial^2 \tau_1 \over \partial s\,\partial x} =
{...
 ...\left(-1+{\sin{\gamma}\over\cos{\alpha}}\,\sin{\alpha_2}\right)\;;\end{eqnarray} (281)
(282)
 
 \begin{displaymath}
B_1\,B_2 = {\cos^6{\gamma}\over v^2\,D^2\,a^4}\;;\;
B_1+B_2 = -2\,{\cos^3{\gamma}\over v\,D\,a^2}\,\left(2\,a^2-1\right)\;;\end{displaymath} (283)
 
 \begin{displaymath}
{\partial^2 \tau_1 \over \partial x^2} =
{{\cos^2{\gamma}+D\...
 ...^2{\gamma}+D\,K}\over{v\,D\,\cos^3{\alpha}}}\,\cos{\alpha_2}\;;\end{displaymath} (284)
 
 \begin{displaymath}
C={\partial^2 \tau_1 \over \partial x^2}+{\partial^2 \tau_2 ...
 ...{\gamma}\,{{\cos^2{\gamma}+D\,K}\over{v\,D\,\cos^3{\alpha}}}\;.\end{displaymath} (285)
Here D is the length of the normal (central) ray, $\alpha$ is its dip angle ($\alpha={{\alpha_1+\alpha_2}\over 2}$, $\tan{\alpha}=z'(x)$), $\gamma$ is the reflection angle $\left(\gamma={{\alpha_2-\alpha_1}\over 2}\right)$, K is the reflector curvature at the reflection point $\left(K=z''(x)\,\cos^3{\alpha}\right)$, and a is the dimensionless function of $\alpha$ and $\gamma$ defined in ([*]).

The equations derived in this appendix were used to get the equation  
 \begin{displaymath}
\tau_n\,\left({\partial^2 \tau_n \over \partial y^2}-
{\part...
 ...}\,\left({\sin^2{\alpha}+DK}\over
{\cos^2{\gamma}+DK}\right)\;,\end{displaymath} (286)
which coincides with ([*]) in the main text.


next up previous print clean
Next: Solving the Cauchy problem Up: Three-dimensional seismic data regularization Previous: Conclusions
Stanford Exploration Project
12/28/2000