next up previous [pdf]

Next: Velocity parametrization Up: Model parametrization and sensitivity-kernel Previous: Model parametrization and sensitivity-kernel

Naive parametrization

The most naive parametrization directly inverts velocity and $ {\epsilon }$ . However, to avoid higher-order term involving both variables, equation 1 can be rewritten as follows:
$\displaystyle m_1\frac{\partial^2 p}{\partial t^2}$ $\displaystyle =$ $\displaystyle m_2\frac{\partial^2 p}{\partial x^2} \
+ \sqrt{1+2\delta}\frac{\partial^2 r}{\partial z^2}$  
$\displaystyle m_1\frac{\partial^2 r}{\partial t^2}$ $\displaystyle =$ $\displaystyle \sqrt{1+2\delta}\frac{\partial^2 p}{\partial x^2} \
+ \frac{\partial^2 r}{\partial z^2},$ (2)

where $ {m_1={v_p}^{-2}}$ and $ {m_2={1+2\epsilon}}$ are the two model variables, assuming
$\displaystyle m_1$ $\displaystyle =$ $\displaystyle m_{1,0}+\Delta{m_1}$  
$\displaystyle m_2$ $\displaystyle =$ $\displaystyle m_{2,0}+\Delta{m_2}$  
$\displaystyle p$ $\displaystyle =$ $\displaystyle p_0+\Delta{p}$  
$\displaystyle r$ $\displaystyle =$ $\displaystyle r_0+\Delta{r}$  
$\displaystyle m_{1,0}\frac{\partial^2 {p_0}}{\partial t^2}$ $\displaystyle =$ $\displaystyle m_{2,0}\frac{\partial^2 {p_0}}{\partial x^2} \
+ \sqrt{1+2\delta}\frac{\partial^2 {r_0}}{\partial z^2}$  
$\displaystyle m_{1_0}\frac{\partial^2 {r_0}}{\partial t^2}$ $\displaystyle =$ $\displaystyle \sqrt{1+2\delta}\frac{\partial^2 {p_0}}{\partial x^2} \
+ \frac{\partial^2 {r_0}}{\partial z^2},$ (3)

By combining this with equation 2, we can obtain
$\displaystyle m_{1,0}\frac{\partial^2 \Delta{p}}{\partial t^2} - m_{2,0}\frac{\...
...p}}{\partial x^2} \
-\sqrt{1+2\delta}\frac{\partial^2 \Delta{r}}{\partial z^2}$ $\displaystyle =$ $\displaystyle \
-\Delta{m_1}\frac{\partial^2 {p_0}}{\partial t^2} + \Delta{m_2}\frac{\partial^2 {p_0}}{\partial x^2}$  
$\displaystyle m_{1,0}\frac{\partial^2 \Delta{r}}{\partial t^2} - \sqrt{1+2\delt...
...rtial^2 \Delta{p}}{\partial x^2} \
- \frac{\partial^2 \Delta{r}}{\partial z^2}$ $\displaystyle =$ $\displaystyle \
-\Delta{m_1}\frac{\partial^2 {r_0}}{\partial t^2},$ (4)

which can be written in the following matrix form:
$\displaystyle \begin{vmatrix}{ m_{1,0}\frac{\partial^2 }{\partial t^2} - m_{2,0...
...left\vert\begin{array}{c} {\Delta{m_1}} \\ {\Delta{m_2}}\end{array}\right\vert,$     (5)

This establishes a linear relationship between model perturbation and data perturbation, and can be used to calculate the sensitivity kernel. Figure 5 shows the relative sensitivity kernels of the two model parameters, which are defined as
$\displaystyle k_{m_i}=g_{m_i}/m_{i,0},$     (6)

where $ {g_{m_i}}$ is the sensitivity kernel, and $ {k_{m_i}}$ is the relative sensitivity kernel. the clipping value of the top figure is over sixteen orders of magnitude larger than the bottom figure, which means if we are to use this parametrization for our inversion, there will be almost no updates of the anisotropic parameter.

relimpn
relimpn
Figure 5.
Relative sensitivity kernel of parameter: a) $ {{v_p}^{-2}}$ ; b) $ {1+2\epsilon }$ . Clipping value of the top figure is $ {1e10}$ , clipping value of the bottom figure is $ {2e-6}$ .
[pdf] [png]


next up previous [pdf]

Next: Velocity parametrization Up: Model parametrization and sensitivity-kernel Previous: Model parametrization and sensitivity-kernel

2012-05-10