Next: SCALING THE ADJOINT
Up: Preconditioning
Previous: Three codes for inverse
Construct theoretical data with
| ![\begin{displaymath}
\bold d \quad =\quad\bold F \bold m\end{displaymath}](img93.gif) |
(30) |
Assume there are fewer data points than model points
and that the matrix
is invertible.
From the theoretical data we estimate a model
with
| ![\begin{displaymath}
\bold m_0 \quad =\quad\bold F' (\bold F \bold F')^{-1} \bold d\end{displaymath}](img95.gif) |
(31) |
To verify the validity of the estimate,
insert the estimate (31) into the
data modeling equation (30) and notice
that the estimate
predicts the correct data.
Notice that equation
(31) is not the same
as equation (
) which we derived much earlier.
What's the difference?
The central issue is which matrix of
and
actually has an inverse.
If
is a rectangular matrix,
then it is certain that one of the two is not invertible.
(There are plenty of real cases where neither matrix is invertible.
That's one reason we use iterative solvers.)
Here we are dealing with the case with more model points than data points.
Now we will show that of all possible models
that
predict the correct data,
has the least energy.
(I'd like to thank Sergey Fomel for this clear and simple proof
that does not use Lagrange multipliers.)
First split (31) into an intermediate
result
and final result:
| ![\begin{eqnarray}
\bold d_0 &=& (\bold F \bold F')^{-1} \bold d
\\ \bold m_0 &=& \bold F' \bold d_0\end{eqnarray}](img98.gif) |
(32) |
| (33) |
Consider another model (
not equal to zero)
| ![\begin{displaymath}
\bold m \quad =\quad\bold m_0 + \bold x\end{displaymath}](img100.gif) |
(34) |
which fits the theoretical data
.Since
,we see
that
is a null space vector.
| ![\begin{displaymath}
\bold F \bold x \quad =\quad\bold 0\end{displaymath}](img103.gif) |
(35) |
First we see that
is orthogonal to
because
| ![\begin{displaymath}
\bold m_0' \bold x \quad =\quad
(\bold F' \bold d_0)' \bold...
... \bold F \bold x \quad =\quad
\bold d_0' \bold 0 \quad =\quad0\end{displaymath}](img104.gif) |
(36) |
Therefore,
| ![\begin{displaymath}
\bold m' \bold m \quad =\quad
\bold m_0' \bold m_0 + \bold x...
...\bold m_0 + \bold x'\bold x \quad\ge\quad \bold m_0' \bold m_0 \end{displaymath}](img105.gif) |
(37) |
so adding null space to
can only increase its energy.
In summary,
the solution
has less energy than any other model that satisfies the data.
Not only does the theoretical solution
have minimum energy,
but the result of iterative descent will too,
provided that we begin iterations from
or any
with no null-space component.
In (36) we see that the
orthogonality
does not arise because
has any particular value.
It arises because
is of the form
.Gradient methods contribute
which is of the required form.
Next: SCALING THE ADJOINT
Up: Preconditioning
Previous: Three codes for inverse
Stanford Exploration Project
4/27/2004