previous up next print clean
Next: Einstein's special relativity theory Up: RETARDED COORDINATES Previous: Fourier transforms in retarded

Interpretation of the modulated pressure variable Q

Earlier a variable Q was defined from the pressure P by the equation  
 \begin{displaymath}
P( \omega ) \eq Q( \omega )\ 
\exp \left[ \ i \omega \int_0^z {dz \over \bar v (z)} \ \right]\end{displaymath} (42)
The right side is a product of two functions of $\omega$.At constant velocity (42) is expressed as  
 \begin{displaymath}
P ( \omega ) \eq Q ( \omega ) \ e^{
i \omega z / v} \eq 
Q ( \omega )\ e^{{i} \omega t_0}\end{displaymath} (43)
In the time domain $ e^{{i} \omega t_0} $becomes a delta function $ \delta ( t \ -\ t_0 )$.Equation (43) is a product in the frequency domain, so in the time domain it is the convolution
   \begin{eqnarray}
p ( t ) &=& q ( t ) \ 
{{\rm *}}\ \delta ( t\ -\ z / v )
\nonumber
\\ & =& q ( t\ -\ z / v )
\nonumber
\\ & =& q ( t' )\end{eqnarray}
(44)

This confirms that the definition of a dependent variable Q is equivalent to introducing retarded time t'.


previous up next print clean
Next: Einstein's special relativity theory Up: RETARDED COORDINATES Previous: Fourier transforms in retarded
Stanford Exploration Project
10/31/1997