previous up next print clean
Next: Processing possibilities Up: INTERVAL VELOCITY BY LINEAR Previous: Common-midpoint Snell coordinates

Differential equations and Fourier transforms

The chain rule for partial differentiation gives  
 \begin{displaymath}
\left[ \ 
\matrix { \partial_t \cr \partial_g \cr \partial_s...
 ... \partial_y
 \cr \partial_{{h}' } \cr \partial_{\tau} }
\right]\end{displaymath} (66)
In our usual notation the Fourier representation of the time derivative $\partial_t$ is $ - i \omega $.Likewise, $ \partial_{ t' }$ and the spatial derivatives $( \partial_y , \partial_{{h}' } , \partial_{\tau} , $$ \partial_g , \partial_s , \partial_z )$ are associated with $i( k_y , k_{{h}' } , k_{\tau} , $kg , ks , kz ). Using these Fourier variables in the vectors of (66) and differentiating (58), (59), (60), and (61) to find the indicated elements in the matrix of (66), we get  
 \begin{displaymath}
\left[ 
\matrix {
\matrix { 1 \cr { - p } \cr p \cr { {2 \, ...
 ... { { - \omega' } \cr k_y \cr k_{{h}' } \cr k_{\tau} }
}
\right]\end{displaymath} (67)

Let S be the sine of the takeoff angle at the source and let G be the sine of the emergent angle at the geophone. If the velocity v is known, then these angles will be directly measurable as stepouts on common-geophone gathers and common-shot gathers. Likewise, on a constant-offset section or a slant stack, observed stepouts relate to an apparent dip Y, and on a linearly moved-out common-midpoint gather, stepouts measure the apparent stepout H'. The precise definitions are
      \begin{eqnarray}
S \ \ \ &=&\ \ \ { v \, k_s \over \omega }\ \ \ 
\ \ \ \ \ \ \ ...
 ...\ \ \ \ \ \ \ \ \ \ \ H' \eq 
{ v \, k_{{h}' } \over 2 \, \omega }\end{eqnarray} (68)
(69)
With these definitions the second and third rows of (67) become
      \begin{eqnarray}
G \ \ \ &=&\ \ \ \ p \, v \ + \ Y \ + \ H' \eq
Y \ + \ ( H' \ +...
 ... \ - p \, v \ + \ Y \ - \ H' \ \ =\ \ 
Y \ - \ ( H' \ + \ p \, v )\end{eqnarray} (70)
(71)
The familiar offset stepout angle H is related to the LMO residual stepout angle H' by H' = H -pv. Setting H' equal to zero means setting kh' equal to zero, thereby indicating integration over h' , which in turn indicates slant stacking data with slant angle p. Small values of H' /v or $k_{{h}' } / \omega $ refer to stepouts near to p.


previous up next print clean
Next: Processing possibilities Up: INTERVAL VELOCITY BY LINEAR Previous: Common-midpoint Snell coordinates
Stanford Exploration Project
10/31/1997