next up previous print clean
Next: DMO IN THE PROCESSING Up: GARDNER'S SMEAR OPERATOR Previous: GARDNER'S SMEAR OPERATOR

Restatement of ellipse equations

Recall equation (9) for an ellipse centered at the origin.  
 \begin{displaymath}
 0 \eq {y^{2}\over{A^{2}}} + {z^{2}\over{B^{2}}} -1 .\end{displaymath} (19)
where  
 \begin{displaymath}
 A \eq v_{\rm half}\, t_h ,\end{displaymath} (20)
 
 \begin{displaymath}
 B^2 \eq A^2 - h^2 .\end{displaymath} (21)

The ray goes from the shot at one focus of the ellipse to anywhere on the ellipse, and then to the receiver in traveltime th. The equation for a circle of radius $R=t_0 v_{\rm half}$with center on the surface at the source-receiver pair coordinate x=b is  
 \begin{displaymath}
 R^2 \eq (y - b)^2 + z^{2} ,\end{displaymath} (22)

where  
 \begin{displaymath}
 R \eq t_0 \, v_{\rm half}.\end{displaymath} (23)

To get the circle and ellipse tangent to each other, their slopes must match. Implicit differentiation of equation (19) and (22) with respect to y yields:  
 \begin{displaymath}
 0 \eq {y \over{A^2}} + {z \over{B^2}}
 \ {dz \over dy}\end{displaymath} (24)
 
 \begin{displaymath}
 0 \eq (y-b) + z
 \ {dz \over dy}\end{displaymath} (25)

Eliminating dz/dy from equations (24) and (25) yields:  
 \begin{displaymath}
 y \eq {b\over 1 - {B^{2}\over{A^{2}}}} .\end{displaymath} (26)
At the point of tangency the circle and the ellipse should coincide. Thus we need to combine equations to eliminate x and z. We eliminate z from equation (19) and (22) to get an equation only dependent on the y variable. This y variable can be eliminated by inserting equation (26).  
 \begin{displaymath}
 R^2 \eq B^2 \left( {A^2 - B^2 - b^2 \over{A^2 - B^2}} \right).\end{displaymath} (27)

Substituting the definitions (20), (21), (23) of various parameter gives the relation between zero-offset traveltime t0 and nonzero traveltime th:  
 \begin{displaymath}
 t_0^2\eq
 \left(t_h^2-{h^{2}\over v_{\rm half}^2}\right)
 \left(1-{b^2\over h^2}\right).\end{displaymath} (28)

As with the Rocca operator, equation (28) includes both dip moveout DMO and NMO.


next up previous print clean
Next: DMO IN THE PROCESSING Up: GARDNER'S SMEAR OPERATOR Previous: GARDNER'S SMEAR OPERATOR
Stanford Exploration Project
12/26/2000