next up previous print clean
Next: About this document ... Up: Fomel: Offset continuation Previous: RANGE OF VALIDITY FOR

SECOND-ORDER REFLECTION TRAVELTIME DERIVATIVES

In this appendix I derive formulas connecting second-order partial derivatives of the reflection traveltime with the geometric properties of the reflector in a constant velocity medium. These formulas are used in the main text of the paper for the amplitude behavior description. Let $\tau(s,r)$ be the reflection traveltime from the source s to the receiver r. Consider a formal equality  
 \begin{displaymath}
\tau(s,r)=\tau_1\left(s,x(s,r)\right)+\tau_2\left(x(s,r),r\right)\;,\end{displaymath} (59)
where x is the reflection point parameter, $\tau_1$ corresponds to the incident ray, and $\tau_2$ corresponds to the reflected ray. Differentiating (B-1) with respect to s and r yields  
 \begin{displaymath}
{\partial \tau \over \partial s} = 
{\partial \tau_1 \over \...
 ...rtial \tau \over \partial x}\,
{\partial x \over \partial s}\;,\end{displaymath} (60)
 
 \begin{displaymath}
{\partial \tau \over \partial r} = 
{\partial \tau_2 \over \...
 ...rtial \tau \over \partial x}\,
{\partial x \over \partial r}\;.\end{displaymath} (61)
According to Fermat's principle, the two-point reflection ray path must correspond to the traveltime extremum. Therefore  
 \begin{displaymath}
{\partial \tau \over \partial x} \equiv 0\end{displaymath} (62)
for any s and r. Taking into account (B-4) while differentiating (B-2) and (B-3), we get  
 \begin{displaymath}
{\partial^2 \tau \over \partial s^2} = 
{\partial^2 \tau_1 \over \partial s^2} + 
B_1\,
{\partial x \over \partial s}\;,\end{displaymath} (63)
 
 \begin{displaymath}
{\partial^2 \tau \over \partial r^2} = 
{\partial^2 \tau_2 \over \partial r^2} + 
B_2\,
{\partial x \over \partial r}\;,\end{displaymath} (64)
 
 \begin{displaymath}
{\partial^2 \tau \over \partial s \partial r} = 
B_1\,
{\partial x \over \partial r}\;=
B_2\,
{\partial x \over \partial s}\;,\end{displaymath} (65)
where
\begin{eqnarraystar}
B_1={\partial^2 \tau_1 \over \partial s \partial x}\;;\;
B_2={\partial^2 \tau_2 \over \partial r \partial x}\;.\end{eqnarraystar}
Differentiating (B-4) gives us the additional pair of equations  
 \begin{displaymath}
C\,{\partial x \over \partial s}+B_1 = 0\;,\end{displaymath} (66)
 
 \begin{displaymath}
C\,{\partial x \over \partial r}+B_2 = 0\;,\end{displaymath} (67)
where
\begin{eqnarraystar}
C={\partial^2 \tau \over \partial x^2}=
{\partial^2 \tau_1 \over \partial x^2}+
{\partial^2 \tau_2 \over \partial x^2}\;.\end{eqnarraystar}
Solving the system (B-8) - (B-9) for $\partial x \over \partial s$ and $\partial x \over \partial r$ and substituting the result into (B-5) - (B-7) produces the following set of expressions:  
 \begin{displaymath}
{\partial^2 \tau \over \partial s^2} = 
{\partial^2 \tau_1 \over \partial s^2} -
C^{-1}\,B_1^2\;;\end{displaymath} (68)
 
 \begin{displaymath}
{\partial^2 \tau \over \partial r^2} = 
{\partial^2 \tau_2 \over \partial r^2} -
C^{-1}\,B_2\;;\end{displaymath} (69)
 
 \begin{displaymath}
{\partial^2 \tau \over \partial s \partial r} = 
- C^{-1}\,B_1\,B_2\;.\end{displaymath} (70)
In the case of a constant velocity medium, expressions (B-10) to (B-12) can be applied directly to the explicit formula for the two-point eikonal  
 \begin{displaymath}
\tau_1(y,x)=\tau_2(x,y)={\sqrt{(x-y)^2+z^2(x)}\over v}\;.\end{displaymath} (71)
Differentiating (B-13) and taking into account the trigonometric relationships for the incident and reflected rays (Figure 1), one can evaluate all the quantities in (B-10) to (B-12) explicitly. After some heavy algebra, the resultant expressions for the traveltime derivatives take the form  
 \begin{displaymath}
{\partial \tau \over \partial s} = 
{\partial \tau_1 \over \...
 ...{\partial \tau_2 \over \partial r} =
{\sin{\alpha_2}\over v}\;;\end{displaymath} (72)
 
 \begin{displaymath}
{\partial \tau_1 \over \partial x} = 
{\sin{\gamma}\over v \...
 ...u_2 \over \partial x} =
- {\sin{\gamma}\over v \cos{\alpha}}\;;\end{displaymath} (73)
 
 \begin{displaymath}
B_1 = 
{\partial^2 \tau_1 \over \partial s\,\partial x} =
{\...
 ...ft(-1-{\sin{\gamma}\over\cos{\alpha}}\,\sin{\alpha_1}\right)\;;\end{displaymath} (74)
 
 \begin{displaymath}
B_2 = 
{\partial^2 \tau_2 \over \partial r\,\partial x} =
{\...
 ...ft(-1+{\sin{\gamma}\over\cos{\alpha}}\,\sin{\alpha_2}\right)\;;\end{displaymath} (75)
 
 \begin{displaymath}
B_1\,B_2 = {\cos^6{\gamma}\over v^2\,D^2\,a^4}\;;\;
B_1+B_2 = -2\,{\cos^3{\gamma}\over v\,D\,a^2}\,\left(2\,a^2-1\right)\;;\end{displaymath} (76)
 
 \begin{displaymath}
{\partial^2 \tau_1 \over \partial x^2} =
{{\cos^2{\gamma}+D\...
 ...^2{\gamma}+D\,K}\over{v\,D\,\cos^3{\alpha}}}\,\cos{\alpha_2}\;;\end{displaymath} (77)
 
 \begin{displaymath}
C={\partial^2 \tau_1 \over \partial x^2}+{\partial^2 \tau_2 ...
 ...{\gamma}\,{{\cos^2{\gamma}+D\,K}\over{v\,D\,\cos^3{\alpha}}}\;.\end{displaymath} (78)
Here D is the length of the normal (central) ray, $\alpha$ is its dip angle ($\alpha={{\alpha_1+\alpha_2}\over 2}$, $\tan{\alpha}=z'(x)$), $\gamma$ is the reflection angle $\left(\gamma={{\alpha_2-\alpha_1}\over 2}\right)$, K is the reflector curvature at the reflection point , and a is the nondimensional function of $\alpha$ and $\gamma$ defined in (35).

The formulas derived in this appendix were used to get the formula  
 \begin{displaymath}
\tau_n\,\left({\partial^2 \tau_n \over \partial y^2}-
{\part...
 ...}\,\left({\sin^2{\alpha}+DK}\over
{\cos^2{\gamma}+DK}\right)\;,\end{displaymath} (79)
which coincides with (38) in the main text.


next up previous print clean
Next: About this document ... Up: Fomel: Offset continuation Previous: RANGE OF VALIDITY FOR
Stanford Exploration Project
6/19/2000