next up previous print clean
Next: Regularization of the angle Up: Sava & Fomel: Angle-gathers Previous: Introduction

Equivalence to slant stacks

The Fourier-domain stretch represented by equation (1) is equivalent to a slant stack in the $z-\vec h$ domain. Indeed, we can convert an image gather in the offset-domain (${\bf H}$) to one in the angle-domain (${\bf A}$), using a slant-stack equation of the form  
 \begin{displaymath}
{\bf A}\left (z,\vec \mu\right ) = \int \H{z+\vec \mu\cdot\vec h}{\vec h} d\vec h,\end{displaymath} (2)
where $\vec \mu$ is a vector describing the direction of the stack.

Fourier transforming equation (2) over the depth axis, we obtain

\begin{displaymath}
\underline {\bf A}\left (k_z,\vec \mu\right ) = \int\left [\int \H{z+\vec \mu\cdot\vec h}{\vec h} d\vec h\right ]e^{i k_zz} dz\end{displaymath}

where the underline stands for a 1-D Fourier transform. We can continue by writing the equation

\begin{displaymath}
\underline {\bf A}\left (k_z,\vec \mu\right ) = \int \int \H...
 ...vec \mu\cdot\vec h\right )-ik_z\vec \mu\cdot\vec h} d\vec hdz, \end{displaymath}

where we can re-arrange the terms as

\begin{displaymath}
\underline {\bf A}\left (k_z,\vec \mu\right ) = \int \left [...
 ...t\vec h\right )} dz\right ]e^{-ik_z\vec \mu\cdot\vec h}d\vec h,\end{displaymath}

which highlights the relation between the 1-D Fourier-transformed angle-domain and offset-domain representation of the seismic images:

\begin{displaymath}
\underline {\bf A}\left (k_z,\vec \mu\right ) = \int \underl...
 ...}\left (k_z,\vec h\right ) e^{-ik_z\vec \mu\cdot\vec h}d\vec h.\end{displaymath}

We recognize on the right-hand side of the previous equation additional Fourier transforms over the offset axes, and therefore we can write

\begin{displaymath}
\underline {\bf A}\left (k_z,\vec \mu\right ) = \underline{\underline{\underline {\bf H}}} \left (k_z,-\vec \mu k_z\right ),\end{displaymath}

where the triple underline stands for the 3-D Fourier transform of the offset-domain common-image gather. Finally, defining $-\vec \mu k_z=\vec{k_h}$, we can conclude that the 1-D Fourier transforms of angle-domain gathers are equivalent to the 3-D Fourier transforms of the offset-domain gathers,  
 \begin{displaymath}
\underline {\bf A}\left (k_z,\vec \mu\right ) = \underline{\underline{\underline {\bf H}}} \left (k_z,\vec{k_h}\right ), \end{displaymath} (3)
subject to the stretch of the offset axis according to the simple law  
 \begin{displaymath}
\vec \mu= -\frac{\vec{k_h}}{k_z}. \end{displaymath} (4)
We can recognize in equation (4) the fundamental relation between the reflection angle and the Fourier-domain quantities that are evaluated in wave-equation migration. This equation also shows that the angles evaluated by (1) are indeed equivalent to slant stacks on offset-domain common-image gathers. Therefore, we could either compute angles for each of the two offset axes with the equations

\begin{displaymath}
\begin{array}
{l}
 \gamma_x= -\tan^{-1} \left (\frac{{k_h}_x...
 ...a_y= -\tan^{-1} \left (\frac{{k_h}_y}{k_z} \right ),\end{array}\end{displaymath}

or compute one angle corresponding to the entire offset vector:

\begin{displaymath}
\gamma= -\tan^{-1} \left (\frac{\vert\vec{k_h}\vert}{k_z} \right ).\end{displaymath}


next up previous print clean
Next: Regularization of the angle Up: Sava & Fomel: Angle-gathers Previous: Introduction
Stanford Exploration Project
5/1/2000