Next: About this document ...
Up: REFERENCES
Previous: Solving for the extrapolation
The expression for
forms the basis for a one-way extrapolation operator that can be used to propagate wavefields on generalized coordinate meshes. This requires that a wavefield at step
(i.e.,
) be propagated to the next step
(i.e.,
) according to
| ![\begin{displaymath}
\mathcal{U}(\xi_3+\Delta \xi_3,k_\xi_1,k_\xi_2,\omega) = \ma...
...xi_1,k_\xi_2;\omega) \; {\rm e}^{-{\rm i} k_\xi_3\Delta \xi_3}.\end{displaymath}](img89.gif) |
(32) |
The back-projection of residuals required for waveform inversion can be implemented easily according to the adjoint process of equation 32,
| ![\begin{displaymath}
\mathcal{U}(\xi_3+\Delta \xi_3,k_\xi_1,k_\xi_2,\omega) = \ma...
...xi_1,k_\xi_2;\omega) \; {\rm e}^{+{\rm i} k_\xi_3\Delta \xi_3}.\end{displaymath}](img90.gif) |
(33) |
Note that the coefficients above are spatially variant which requires employing a typical approach (e.g. split-step Fourier, FFD or phase-screens) for developing a mixed
domain exponential operators. This study uses the split-step Fourier approach detailed in Shragge (2006a) using the extrapolation wavenumber
defined by equation 31.
Next: About this document ...
Up: REFERENCES
Previous: Solving for the extrapolation
Stanford Exploration Project
1/16/2007