previous up next print clean
Next: About this document ... Up: Claerbout: Preconditioning and scalingPreconditioning Previous: HOW MUCH DAMPING?

ROW PARTITIONED OPERATORS

A problem arises with partitioned operators. Here we are fitting observed data to theoretical data where there are two classes of model parameters $\bold m_1$ and $\bold m_2$.We seek to minimize the norm of the residual $\bold r$ defined by  
 \begin{displaymath}
\bold 0 \quad\approx\quad \bold r \quad=\quad
\left[
\alpha ...
 ..._1/\alpha \\  \bold m_2/\beta
 \end{array}\right] \ - \ \bold d\end{displaymath} (9)
where $\alpha$ and $\beta$ are arbitrary scaling constants. The residual is independent of $\alpha$ and $\beta$,but when we ``solve" this system using (as we must) the idea that $\bold F^{-1}\approx \bold F'$,we see the result depends on $\alpha$ and $\beta$,namely it contains $\alpha^2$ and $\beta^2$ 
 \begin{displaymath}
\left[
 \begin{array}
{l}
 \hat \bold m_1/\alpha \\  \hat \b...
 ...alpha \bold F' \\  \beta \bold B'
 \end{array}\right]
\ \bold d\end{displaymath} (10)
Let us find the best $\alpha$ and $\beta$.Inserting the image (10) into the residual (9) we get
\begin{eqnarray}
\bold 0 &\approx& \bold r \quad=\quad
\left[
 \alpha \bold F \q...
 ...& \bold r \quad=\quad
\alpha^2 \bold u +
 \beta^2 \bold v -\bold d\end{eqnarray} (11)
(12)
(13)
which defines two vectors $\bold u$ and $\bold v$.

We find the best scaling factors by setting to zero the derivative of $\vert\vert\bold r\vert\vert^2$with respect to $\alpha^2$ and $\beta^2$
\begin{displaymath}
\bold 0
\quad=\quad
\left[
\begin{array}
{rr}
 \bold u'\bold...
 ...y}
{c}
 \bold u'\bold d \\  \bold v'\bold d \end{array} \right]\end{displaymath} (14)
solving gives  
 \begin{displaymath}
\left[
\begin{array}
{c}
 \alpha^2 \\  \beta^2 \end{array} \...
 ...y}
{c}
 \bold u'\bold d \\  \bold v'\bold d \end{array} \right]\end{displaymath} (15)
I believe it can be shown that the values $\alpha^2$ and $\beta^2$ are positive.

Recalling that $\bold u = \bold F \bold F' \bold d $ and $\bold v = \bold B \bold B' \bold d $,let us now define $\bold a = \bold F' \bold d $ and $\bold b = \bold B' \bold d $so $\bold u = \bold F \bold a $ and $\bold v = \bold B \bold b $.

In imaging applications we customarily ignore the scaling factor which is the common part of $\alpha$ and $\beta$,namely, the denominator determinant in (15). We have the proportions
\begin{eqnarray}
\alpha^2 &\sim&
\ 
\ 
(\bold b' \bold B' \bold B \bold b)
 ( \b...
 ...bold a) +
(\bold a' \bold F' \bold F \bold a)
 ( \bold b' \bold b)\end{eqnarray} (16)
(17)
(18)

A deeper problem of interest arises when we seek the best diagonal matrix scaling. Then we replace $\alpha^2$with two diagonal matrices, one before and one after $\bold F$.Likewise with $\beta$ and $\bold B$.We need help finding those four diagonal matrices.


previous up next print clean
Next: About this document ... Up: Claerbout: Preconditioning and scalingPreconditioning Previous: HOW MUCH DAMPING?
Stanford Exploration Project
11/11/1997