next up previous print clean
Next: C. 15-degree algorithm in Up: 7: GEOMETRICAL PROBLEMS OF Previous: A. Homogenous layer with

B. Two-layer media

Let the first layer with horizontal bedding z=h1 have the velocity v1, and the second layer with the dipping bed

\begin{displaymath}
z=h_{1}+h_{2}+x\tan \phi\end{displaymath}

have velocity v2. Time-migration is performed in homogeneous model with velocity $v_{c}={v^{\prime} \over 2}$.

First step:

\begin{displaymath}
t_{0} (x)= {2h_{2} \cos \phi \over v_{2}} + {2h_{1} \over v_...
 ...over v_{2}})}^{2} \sin^{2} \phi} + {2 \sin \phi \over v_{2}} x.\end{displaymath}

Second step: $(v_{c}={v^{\prime} \over 2})$ :

\begin{displaymath}
\tau ^{(-)}(x,z)= {2h_{2} \cos \phi \over v_{2}} + {2 h_{1} ...
 ...e}}
\sqrt{1 - {({v^{\prime} \over v_{2}})}^{2} \sin^{2} \phi }.\end{displaymath}

Third step: imaging (from the condition (74)):

\begin{displaymath}
z={({v^{\prime}\over v_2}) \cos \phi \over 
\sqrt{1 - {({v^{...
 ...i }
\over ({v_{1}\over v_{2}})\cos \phi } + x \tan \phi \right]\end{displaymath}

After substitution $z=v^{\prime}t$, we obtain location of reflector image in the time section:  
 \begin{displaymath}
t={\cos \phi \over v_{2} 
\sqrt{1 - {({v^{\prime} \over v_{2...
 ...}
\over ({v_{1}\over v_{2}})\cos \phi } + x \tan \phi \right]. \end{displaymath} (75)

Let us perform time-to-depth migration in true two-layer model with the help of Hubral's technique (Hubral, 1977). This technique consists of transmission of amplitudes along image rays, which satisfy Snell's law and approach the surface $\Sigma$ vertically. But in this simple example all image rays are vertical in both layers. So the location of the reflector's image in depth-section will be derived from the equation:

\begin{displaymath}
t - {h_{1}\over v_{1}} - {(z-h_{1})\over v_{2}}=0\end{displaymath}

where t must be expressed according to equation (75). After simple manipulation we derive

\begin{displaymath}
z={\cos \phi \over 
\sqrt{1 - {({v^{\prime} \over v_{2}})}^{...
 ...\phi \right]
-h_{1} \cdot \left( {v_{2} \over v_{1}} -1 \right)\end{displaymath}

that differs from true position of the reflector.


next up previous print clean
Next: C. 15-degree algorithm in Up: 7: GEOMETRICAL PROBLEMS OF Previous: A. Homogenous layer with
Stanford Exploration Project
1/13/1998