next up previous print clean
Next: Fourier transformations Up: 1: WHAT IS A Previous: 1: WHAT IS A

Functions with discontinuities

Let us consider the functions listed in the left column of Table 1.
5|c|Table 1: Functions and discontinuities        
function order A0 A1 A2
H(t)   1    
$e^{-\alpha t} \cdot H(t)$   1 $- \alpha$ $\alpha^2$
$e^{-\alpha t} \sin \omega_0 t \cdot H(t)$ 1   $\omega_0$ $2 \alpha \omega_0$
$t e^{-\alpha t} \cos \omega_0 t \cdot H(t)$ 1   1 $-2 \alpha$
$t e^{-\alpha t} \sin \omega_0 t \cdot H(t)$ 2     $2 \omega_0$
$t^2 e^{-\alpha t} \cos \omega_0 t \cdot H(t)$ 2     2
$e^{-\alpha \vert t \vert} $ 1   $-2 \alpha$ $2 \alpha^2$
$e^{-\alpha \vert t \vert} \sin \omega_0 t$ 1     $-4 \alpha \omega_0$

All these functions have one general property in common: a discontinuity (a jump of derivatives) at the point t=0. The simplest example of a discontinuity is given by the step function H(t) (Figure [*]). It has a discontinuity of order 0. We observe the same discontinuity for the second function $e^{- \alpha t} H(t)$. One can find the orders of the discontinuities of the other functions in column 2. In columns 3 etc., the amplitudes of derivative jumps are given:

 
Ak=f(k)(0+)-f(k)(0-) (1)

where

\begin{displaymath}
f^{(k)}(0^{+})=\lim_{t\rightarrow 0^{+}} {\:}f^{(k)}(t), \end{displaymath}

\begin{displaymath}
f^{(k)}(0{-})=\lim_{t\rightarrow 0^{-}} {\:}f^{(k)}(t). \end{displaymath}

Definition: The function f(t) has a discontinuity of order r at the point t=0, if for all $k<r,\ A_{k}=0$ and for $k=r,\ A_{r} \neq 0$.Values $A_{k},\ (k \geq r)$ are called amplitudes of order k.


next up previous print clean
Next: Fourier transformations Up: 1: WHAT IS A Previous: 1: WHAT IS A
Stanford Exploration Project
1/13/1998