Next: Fourier-transformation
Up: 2: THE STANDARD DISCONTINUITIES
Previous: The operators and
There is a very important case of discontinuity: 1/t. It does not belong to
our set of standard discontinuities. It will be useful to expand our set of
discontinuities by introducing the Hilbert transformation:
![\begin{displaymath}
R_{q,1}(t)={\bf H} R_q(t).\end{displaymath}](img96.gif)
We see that
. But what about Rq,1 for
q>-1? Unfortunately, the integral:
![\begin{displaymath}
{\bf H}R_{q,1}(t)={1\over \pi q!}\int_{0}^{\infty}{\tau^q\over (t-\tau)}d\tau\end{displaymath}](img98.gif)
does not exist because of the non-integrable singularity at the point
=0.
But we may use the following trick: if q>-1, we apply the operator
and obtain the discontinuity R-1. After that we may apply the Hilbert
transformation
and then the inverse operator
.
Remembering the equation (14), we get:
![\begin{displaymath}
R_{q,1}(t)\stackrel{\infty}{\sim}{\bf D}^{-(q+1)}{\bf H}{\bf D}^{q+1}R_q(t).\end{displaymath}](img103.gif)
This is a definition of the Hilbert transformation for discontinuities. We
define also:
![\begin{displaymath}
R_{q,\nu}(t)=\left[\cos({\pi\nu\over 2}){\bf E} + \sin({\pi\nu\over 2}){\bf H}
\right]R_q(t) \equiv {\bf H}^{\nu}R_q(t) \end{displaymath}](img104.gif)
where
is the unit operator.
Next: Fourier-transformation
Up: 2: THE STANDARD DISCONTINUITIES
Previous: The operators and
Stanford Exploration Project
1/13/1998