Next: Hilbert transformation
Up: 2: THE STANDARD DISCONTINUITIES
Previous: Examples
It is obvious that the integration of Rq(t) gives Rq+1(t):
![\begin{displaymath}
{\bf I} R_q(t)=R_{q+1}(t) \end{displaymath}](img88.gif)
and in general:
![\begin{displaymath}
{\bf I}^p R_q(t)=R_{q+p}(t) \mbox{\hspace{1.0cm}} (p\gt) .\end{displaymath}](img89.gif)
Does it imply that:
(where
is the inverse
of
)? If we apply the operator
to the sum Rp+q(t)+Pn(t),
we get for
:
![\begin{displaymath}
{\bf D}^p[R_{q+p}(t)+P_n(t)]=R_q(t).\end{displaymath}](img93.gif)
But
, so:
| ![\begin{displaymath}
{\bf D}^{-p}R_q(t) \stackrel{\infty}{\sim}R_{q+p}(t).\end{displaymath}](img95.gif) |
(14) |
Next: Hilbert transformation
Up: 2: THE STANDARD DISCONTINUITIES
Previous: Examples
Stanford Exploration Project
1/13/1998