One of the most common problems with traditional compressional wave
surveys is ground roll. Ground roll is typically composed of Rayleigh
and/or Love waves, and usually the Rayleigh wave component is the one we
need to eliminate because it is contaminating the P-wave data near
the shot point. The Rayleigh wave speed depends on both the compressional
and shear wave speeds of the medium, and - being a surface wave -
it is most strongly influenced by the topmost layers of the earth
(usually those within about one wavelength from the surface).
So for shallow imaging and analysis, why not consider using
Rayleigh wave speed measurements together with P-wave speed
measurements to infer the S-wave speed.? The pertinent S-wave
speed in an anisotropic (VTI) medium is the shear wave speed in the
symmetry plane (perpendicular to the axis of symmetry). So the
formula shown previously (7) is pertinent, but it
needs to be used in a different way to find the shear wave speed
, when
and vR are known.
To accomplish this goal, I first square (6). The result is a quartic equation for q = (vR/vs)2. In this case, vR is known, but vs is unknown (opposite of the earlier case). But this difference does not cause any difficulty in the analysis. The equation can be rearranged into the form:
| |
(21) |
Having once determined the value of
--
using the measured Rayleigh wave speed and the compressionial wave
speed vp -- in the symmetry plane, Thomsen parameter analysis
can be combined with the Sayers and Kachanov (1991)
method in order to deduce useful information about the nature
of the heterogeneities causing the anisotropic at the macroscale.
Once these wave speeds are known, the analysis for interpretation can
proceed in essentially the same manner as in the previous example.
| NI | -0.000216 | 0.0287 |
| DS | -0.000216 | 0.0290 |
| CPA | -0.000258 | 0.0290 |
| SC | -0.0000207 | 0.0290 |